Trm-parking.ru

ТРМ Паркинг
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Предел прочности

Предел прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1] , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ0.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

Прочность на разрыв единица измерения

Содержание

Предел прочности при растяжении

Предел прочности при растяжении (сопротивление на разрыв) или временное сопротивление разрыву σв – механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента разрушения, то его также называют условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности при растяжении измеряется:

1 кгс/мм 2 = 10 -6 кгс/м 2 = 9,8·10 6 Н/м 2 = 9,8·10 7 дин/см 2 = 9,81·10 6 Па = 9,81 МПа.

Преде́л про́чности — механическое напряжение σ B , выше которого происходит разрушение материала. Иначе говоря, это пороговая величина, превышая которую механическое напряжение разрушит некое тело из конкретного материала. Следует различать статический и динамический пределы прочности. Также различают пределы прочности на сжатие и растяжение.

Содержание

Величины предела прочности [ править | править код ]

Статический предел прочности [ править | править код ]

Статический предел прочности, также часто называемый просто пределом прочности есть пороговая величина постоянного механического напряжения, превышая который постоянное механическое напряжение разрушит некое тело из конкретного материала. Согласно ГОСТ 1497-84 «Методы испытаний на растяжение», более корректным термином является временное сопротивление разрушению — напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от представления, по которому материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения, меньшие статического предела прочности, то есть не превышающие временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях), материал разрушится (произойдет дробление испытываемого образца на несколько частей) спустя какой-то конечный промежуток времени (возможно, что и практически сразу, — то есть не дольше чем за 10 с).

Динамический предел прочности [ править | править код ]

Динамический предел прочности есть пороговая величина переменного механического напряжения (например при ударном воздействии), превышая которую переменное механическое напряжение разрушит тело из конкретного материала. В случае динамического воздействия на это тело время его нагружения часто не превышает нескольких секунд от начала нагружения до момента разрушения. В такой ситуации соответствующая характеристика называется также условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности на сжатие [ править | править код ]

Предел прочности на сжатие есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) сожмет тело из конкретного материала — тело разрушится или неприемлемо деформируется.

Предел прочности на растяжение [ править | править код ]

Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала. (На практике, для детали какой либо конструкции достаточно и неприемлемого истончения детали.)

Другие прочностные параметры [ править | править код ]

Мерами прочности также могут быть предел текучести, предел пропорциональности, предел упругости, предел выносливости, предел прочности на сдвиг и др. так как для выхода конкретной детали из строя (приведения детали в негодное к использованию состояние) часто достаточно и чрезмерно большого изменения размеров детали. При этом деталь может и не разрушиться, а лишь только деформироваться. Эти показатели практически никогда не подразумеваются под термином «предел прочности».

Прочностные особенности некоторых материалов [ править | править код ]

Значения предельных напряжений (пределов прочности) на растяжение и на сжатие у многих материалов обычно различаются.

У композитов предел прочности на растяжение обычно больше предела прочности на сжатие. Для керамики (и других хрупких материалов) — наоборот, характерно многократное превышение пределом прочности на сжатие предела прочности на растяжение. Для металлов, металлических сплавов, многих пластиков, как правило, характерно равенство предела прочности на сжатие и пределу прочности на растяжение. В большей степени это связано не с физикой материалов, а с особенностями нагружения, схемами напряженного состояния при испытаниях и с возможностью пластической деформации перед разрушением.

Прочность твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами, составляющими тело. При увеличении расстояния между атомами они начинают притягиваться, причем на критическом расстоянии сила притяжения по абсолютной величине максимальна. Напряжение, отвечающее этой силе, называется теоретической прочностью на растяжение и составляет σтеор ≈ 0,1E, где E — модуль Юнга . Однако на практике наблюдается разрушение материалов значительно раньше, это объясняется неоднородностями структуры тела, из-за которых нагрузка распределяется неравномерно.

Некоторые значения прочности на растяжение σ 0 > в МПа (1 кгс/мм² = 100 кгс/см² ≈ 10 МН/м² = 10 МПа) (1 МПа = 1 Н/мм² ≈ 10 кгс/см²) [1] :

Прочность металлических конструкций – один из важнейших параметров, определяющих их надежность и безопасность. Издревле вопросы прочности решались опытным путем — если какое-либо изделие ломалось — то следующее делали толще и массивнее. С 17 века ученые начали планомерное исследование проблемы, прочностные параметры материалов и конструкций из них можно рассчитать заранее, на этапе проектирования. Металлурги разработали добавки, влияющие на прочность стальных сплавов.

Предел прочности

Предел прочности — это максимальное значение напряжений, испытываемых материалом до того, как он начнет разрушаться. Его физический смысл определяет усилие растяжения, которое нужно приложить к стрежневидному образцу определенного сечения, чтобы разорвать его.

Каким образом производится испытание на прочность

Прочностные испытания на сопротивление разрыву проводятся на специальных испытательных стендах. В них неподвижно закрепляется один конец испытываемого образца, а к другому присоединяют крепление привода, электромеханического или гидравлического. Этот привод создает плавно увеличивающее усилие, действующее на разрыв образца, или же на его изгиб или скручивание.

Испытание на разрыв

Электронная система контроля фиксирует усилие растяжения и относительное удлинение, и другие виды деформации образца.

Виды пределов прочности

Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.

Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.

Различают следующие виды предела прочности при:

  • сжатии — определяет способность материала сопротивляться давлению внешней силы;
  • изгибе — влияет на гибкость деталей;
  • кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
  • растяжении.

Виды испытаний прочности материалов

Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.

Предел прочности стали

На сегодняшний день сталь все еще является наиболее применяемым конструкционным материалом, понемногу уступая свои позиции различным пластмассам и композитным материалам. От корректного расчета пределов прочности металла зависит его долговечность, надежность и безопасность в эксплуатации.

Предел прочности стали зависит от ее марки и изменяется в пределах от 300 Мпа у обычной низкоуглеродистой конструкционной стали до 900 Мпа у специальных высоколегированных марок.

На значение параметра влияют:

  • химический состав сплава;
  • термические процедуры, способствующие упрочнению материалов: закалка, отпуск, отжиг и т.д.

Некоторые примеси снижают прочность, и от них стараются избавляться на этапе отливки и проката, другие, наоборот, повышают. Их специально добавляют в состав сплава.

Условный предел текучести

Кроме предела прочности, в инженерных расчетах широко применяется связанное с ним понятие-предел текучести, обозначаемый σт. Он равен величине напряжения сопротивления разрыву, которое необходимо создать в материале, для того, чтобы деформация продолжала расти без наращивания нагрузки. Это состояние материала непосредственно предшествует его разрушению.

На микроуровне при таких напряжениях начинают рваться межатомные связи в кристаллической решетке, а на оставшиеся связи увеличивается удельная нагрузка.

Общие сведения и характеристики сталей

С точки зрения конструктора, наибольшую важность для сплавов, работающих в обычных условиях, имеют физико-механические параметры стали. В отдельных случаях, когда изделию предстоит работать в условиях экстремально высоких или низких температур, высокого давления, повышенной влажности, под воздействием агрессивных сред — не меньшую важность приобретают и химические свойства стали. Как физико-механические, так и химические свойства сплавов во многом определяются их химическим составом.

Влияние содержание углерода на свойства сталей

По мере увеличения процентной доли углерода происходит снижение пластичности вещества с одновременным ростом прочности и твердости. Этот эффект наблюдается до приблизительно 1% доли, далее начинается снижение прочностных характеристик.

Повышение доли углерода также повышает порог хладоемкости, это используется при создании морозоустойчивых и криогенных марок.

Влияние углерода на механические свойства стали

Рост содержания С приводит к ухудшению литейных свойств, отрицательно влияет на способность материала к механической обработке.

Добавки марганца и кремния

Mn содержится в большинстве марок стали. Его применяют для вытеснения из расплава кислорода и серы. Рост содержания Mn до определенного предела (2%) улучшает такие параметры обрабатываемости, как ковкость и свариваемость. После этого предела дальнейшее увеличение содержания ведет к образованию трещин при термообработке.

Влияние кремния на свойства сталей

Si применяется в роли раскислителя, используемого при выплавке стальных сплавов и определяет тип стали. В спокойных высокоуглеродистых марках должно содержаться не более 0,6% кремния. Для полуспокойных марок этот предел еще ниже — 0,1 %.

При производстве ферритов кремний увеличивает их прочностные параметры, не понижая пластичности. Этот эффект сохраняется до порогового содержания в 0,4%.

Влияние легирующих добавок на свойства стали

В сочетании с Mn или Mo кремний способствует росту закаливаемости, а вместе с Сг и Ni повышает коррозионную устойчивость сплавов.

Азот и кислород в сплаве

Эти самые распространенные в земной атмосфере газы вредно влияют на прочностные свойства. Образуемые ими соединения в виде включений в кристаллическую структуру существенно снижают прочностные параметры и пластичность.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Прочность и твердость крепежных изделий

Крепежные изделия постоянно испытывают на себе воздействие многочисленных сил. Представим лежащий на столе болт. На него (как, впрочем, и на всех нас), безусловно, действует сила тяжести. Болт свои весом воздействует на стол, деформируя его, на что стол реагирует противодействующей силой – силой реакции опоры. Эти силы равны по величине и противонаправлены. Поэтому болт лежит на столе и не падает.

Если мысленно мы мгновенно уберем стол, сила реакции опоры исчезнет и под действием оставшейся силы тяжести болт упадет. Говоря физическим языком – приобретет ускорение. Сила и ускорение связаны между собой: чем большая сила воздействует на предмет, тем с большим ускорением тот начинает двигаться. А масса предмета связывает силу и ускорение в простое уравнение:

И это понятно: чем сильнее мы ударим по мячу, тем быстрее он полетит в ворота. А падающие объекты ускоряются. Примерно так размышлял и Ньютон, создавая свои знаменитые законы (Рис. 1). Именно в его честь единицу измерения силы назвали Ньютон.

Итак, сила – это действие тел друг на друга, создающее ускорение. Формальное определение 1 Ньютона (обозначается Н) таково: это сила, которая сообщает телу массой 1 кг ускорение 1м/с 2 . На практике часто пользуются другой устаревшей единицей измерения «килограмм-сила» (обозначается кгс). Она определяется как сила, с которой тело массой один килограмм давит на весы на поверхности Земли. Ускорение соответствующее этой силе называется ускорение свободного падения и составляет для Земли 9,80665 м/с 2 . Понятно, что 1 кгс при этом больше чем 1 Н в эти самые 9,80665 раз. Но на практике чаще всего это неудобное число округляют до 10. Получается, что для перевода Н в кгс нужно число Ньютонов уменьшить в 10 раз, т.е. просто «отбросить один нолик». И, наоборот, для перевода кгс в Н «нолик нужно приписать».

Проведем еще один мысленный эксперимент. Надежно укрепим на потолке отрезок металлической проволоки и отрезок нитки примерно одинаковой толщины. Навесим на них одинаковые грузы. Нитка порвалась, а проволока нет. Почему? Ведь на них был навешен один и тот же груз и, следовательно, действовала одна и та же сила. Здравый смысл подсказывает ответ: проволока прочнее нитки. Значит, есть некое понятие «прочность», отличное от «силы», которое объясняет нам результаты опыта. Прочность – свойство материала сопротивляться разрушению под действием внешних сил. Таким образом, мы можем говорить, что проволока прочнее нитки.

Понятно, что «внутри» нитка и проволока устроены по-разному. Эта разница берет свое начало на атомно-молекулярном уровне. Мы не будем погружаться в такие глубины, а попытаемся сообразить, что может быть выбрано в качестве меры прочности в нашем повседневном макромире. Ответ напрашивается сам собой – нагрузка. Тот материал, который выдерживает без разрушения бОльшую нагрузку, тот и прочнее. Однако, простота такого подхода – кажущаяся.

Проведем опыт. Возьмем два отрезка стальной проволоки из одного и того же материала, но разной толщины. Навесим на них равные достаточно большие грузы. Тонкая проволока порвалась, а толстая нет. Почему? Ведь на них был навешен один и тот же груз и, следовательно, действовала одна и та же сила. А главное, они обладают одинаковой прочностью – материал-то один. Естественный ответ: одна из проволок тоньше, а другая толще. Говоря более строгим языком, проволоки имеют разные площади сечения.

Важный вывод: сравнивать изделия по прочности надо относя нагрузочные характеристики к единице площади. Физические величины, значения которых задаются применительно к единице площади часто называют удельными. В нашем случае сила, отнесенная к единице площади, является самостоятельной физической характеристикой и называется напряжением. Напряжение – это сила приведенная к единице площади. Оно обозначается греческой буквой сигма (σ) и имеет размерность Н/мм 2 или кгс/мм 2 . Зная силу и площадь ее приложения мы всегда можем вычислить действующее в настоящий момент в изделии напряжение.

Поскольку мы говорим здесь о метизах, то особый интерес представляет рассмотрение того, что происходит с металлическим стержнем – образцом, который растягивают вдоль оси. Дело в том, что в реальном эксперименте по мере приложения внешних сил с одной стороны увеличиваются внутренние напряжения в образце, а с другой – возникают деформации самого образца. Так называемая «диаграмма разрушения» (Рис. 3) в координатах «Нагрузка» / «Перемещение (обычно ход зажима снимается на специальных разрывных машинах или прессах автоматически (Рис. 2).


Рис. 3

0А – участок упругой деформации. Если остановить нагружение и разгрузить образец, он вернется в исходное состояние.
АВ – участок пластического разрушения. Почти при постоянной нагрузке длина образца необратимо увеличивается.
ВС – зона развития трещины. Образец разрушен.

Чтобы иметь возможность сравнивать различные диаграммы разрушения, например, для разных материалов, их надо привести к удельным характеристикам, т.е. к виду «Напряжение» / «Деформация». На этой диаграмме есть две важные характерные точки. Это предел текучести σт и предел прочности σв.

Предел текучести соответствует точке А на диаграмме разрушения и называется так потому, что металл образца не «течет», т.е. не деформируется необратимо, пока не будет достигнуто σт. При дальнейшем нагружении образец начинает «течь» и на нем возникает характерная шейка (Рис. 4).

Предел прочности σв соответствует точке В на диаграмме разрушения, т.е. возникновению трещины и полному разрушению образца.

Эти две характеристики материала в крепежном деле занимают особое положение. С их помощью строится обозначение углеродистых сталей, широко используемых при производстве крепежа. Оно называется классом прочности и состоит из двух чисел, разделенных точкой. Первое число является пределом прочности материала σв в Н/мм 2 , деленным на 100 (в кгс – на 10). Второе число является отношением предела текучести σт к пределу прочности σв, умноженным на 10.

Например, обозначение 5.8 указывает на то, что изделие изготовлено из стали, для которой предел прочности
σв = 5 х 100 = 500 Н/мм 2 (50 кгс/мм 2 ),
а предел текучести
σт = σв х 8 / 10 = 500 х 8 / 10 = 400 Н/мм 2 (40 кгс/мм 2 ).

Класс прочности – важнейший показатель механических свойств материала, а, следовательно, и изделия в целом. Поэтому, например, его наносят на все болты при их изготовлении (Рис. 5).

Для удобства в ГОСТ 1759.4-87 приведена табл. 1 для определения класса прочности болтов, винтов и шпилек по значениям σв и σт. (Применяется только для изделий с d 2 (700 МПа) – А2-70.

2 – мартенситной стали, закаленной и отпущенной, с пределом прочности на разрыв не менее 00 Н/мм 2 (700 МПа) – С4-70.

Использование прочностных характеристик для оценки качества сталей и сплавов хорошо тем, что опирается непосредственно на фактическое растяжение испытуемого образца. Однако размер такого образца ограничен мощностью и ходом захватов разрывной машины. Исследования прочности негабаритных изделий могут потребовать изготовления специальных образцов.

Указанная проблема сегодня решается косвенными методами оценки прочности. И наиболее используемый из них – определение твердости. Твердость — свойство материала сопротивляться проникновению в него другого, более твёрдого тела — индентора. Твердость – не фундаментальное свойство материала, а реакция на определенный метод испытаний. Напомним, что прочность – свойство материала сопротивляться разрушению под действием внутренних напряжений, возникающих под воздействием внешних сил, и поэтому является свойством материала.

Однако некоторая корреляция между твердостью и прочностью металлов и сплавов все-таки существует. Узнать об этом подробнее вы можете из таблицы соответствия класса твердости и прочности крепежных изделий. Наиболее употребляемые методы измерения твердости основаны на вдавливании в испытуемый образец (объект) инденторов различной формы и измерения размеров образующегося отпечатка.

Три самые популярные из них – это методы:
а – по Бринеллю (сфера);
б – по Роквеллу (конус);
в – по Виккерсу (пирамидка).

Применение различных методов измерений твёрдости металлов обусловлено механическими свойствами металлов и конструктивно-технологическими особенностями изделий.

Специфика резьбовых изделий заключается в том, что собственно витки резьбы зачастую прогреваются лучше основного тела изделия. Поэтому при небрежной термообработке возможен их неодинаковый нагрев от поверхности к середине, и как следствие, т.н. «обезуглероживание» витков резьбы. Углерод в перегретой части изделия окисляется, структура стали становится ферритной, что приводит к снижению механических характеристик обезуглероженного слоя.

1 – частичное обезуглероживание;
2 – полное обезуглероживание;
3 – основной металл:
Н1 – высота профиля наружной резьбы.

В болтах, например, это часто проявляется в «сползании» резьбы по стержню при испытаниях на растяжение. Измерение микротвердости от поверхности к центру на поперечном шлифе болта позволяет выявить допущенное обезуглероживание поверхности.

В ассортименте ЦКИ имеются изделия, главной характеристикой которых является твердость.

Это косые шайбы DIN 934, DIN 935, DIN 6917;


Установочные винты DIN 913, DIN 914, DIN 915, DIN 916;

Шайбы стопорные с упругими зубцами DIN 6798 A, DIN 6798 V, DIN 6798 J;

Различные варианты плоских шайб, у которых также единственно важной характеристикой является твёрдость, например, DIN 125, DIN 6916.

1. СУЩНОСТЬ МЕТОДА

Метод состоит в приложении к образцу, помещенному между двумя параллельно расположенными опорами, нагрузки в осевом направлении до достижения ожидаемой деформации или до разрушения образца.

2. ОБРАЗЦЫ

2.1 . Для испытания применяют образцы двух типов — I и II.

2.2 . Размеры образцов типа I приведены на черт. 1 (25 координат с интервалами в 1 мм). Торцовые и цилиндрические поверхности головок образцов должны быть шлифованными.

Другие поверхности образца шлифованию не подвергают.

2.3 . Минимальный диаметр образца типа I измеряют с погрешностью не более 0,02 мм.

2.4 . Образец типа II должен иметь цилиндрическую форму диаметром (8 ± 0,3) мм и длиной (16 ± 0,5) мм.

При изготовлении образцов удаляют поверхностный слой на глубину не менее 0,2 мм.

2.4.1 . Торцовые и цилиндрическая поверхности образца должны быть шлифованными.

2.4.2 . Шероховатость поверхности торцов образца Ra должна быть не более 0,63 мкм.

Шероховатость цилиндрической поверхности образца Ra должна быть не более 2,5 мкм.

2.4.3 . Отклонение от параллельности торцов образца не должно превышать 0,5 мкм/мм.

Конусность образца не должна превышать 0,05 мм.

2.4.4 . Длину и диаметр образца измеряют с погрешностью не более 0,01 мм.

Параллельность торцов образцов измеряют с погрешностью до 0,001 мм.

2.5 . Перед испытанием образцы подвергают визуальному осмотру для определения качества поверхности.

На поверхности образца не должно быть трещин или дефектов структуры.

3. АППАРАТУРА

3.1 . Испытательная машина (пресс) для испытания на сжатие, обеспечивающая условия испытания:

максимальная нагрузка на образец должна быть достаточной для его разрушения;

скорость приложения нагрузки должна быть равномерной;

устройство для измерения нагрузки, необходимой для деформации, с погрешностью не более 1 %.

3.2 . Две точно центрированные и жестко закрепленные параллельно расположенные опоры из твердого сплава твердостью не менее 1600 HV (черт. 2 ).

Контактные поверхности опор должны быть перпендикулярны к оси нагружения и параллельны друг другу.

Отклонение от параллельности между двумя опорами не должно превышать 0,5 мкм/мм.

3.3 . Прокладки из алюминиевой или танталовой фольги толщиной (0,05 ± 0,005) мм.

3.4 . Экстензометры (калибры смещения зажимного типа) или тензодатчики проволочные по нормативно-технической документации.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1 . Испытания проводят при температуре () К [() ° C].

4.2 . Образец для испытания помещают между двумя опорами. Между образцом и опорами устанавливают прокладки из алюминиевой или танталовой фольги.

К образцу прикладывают плавно увеличивающуюся без рывков нагрузку. Скорость нагружения должна быть не более 8000 Н/с, что соответствует приблизительно 100 МПа/с.

4.3 . Предел текучести при сжатии Rcg , например при остаточной деформации εс = 0,2 % — Rc 0,2 , определяют графическим методом в соответствии с черт. 3 .

4.3.1 . На испытуемый образец, установленный между опорами машины и предварительно нагруженный, устанавливают экстензометр (тензодатчики). Затем образец нагружают и записывают диаграмму «нагрузка — деформация».

Примечание . Из-за малой длины испытуемой зоны и высокой твердости материала возникают затруднения, связанные с измерением изменения длины с помощью использования экстензометров. Поэтому рекомендуется измерять изменения длины с помощью проволочного тензодатчика. Для этой цели в центре зоны испытания образца прикрепляют к нему симметрично два или четыре датчика.

Рабочая длина датчиков не должна превышать 8 мм.

Полученные результаты представляют среднюю величину изменения длины зоны испытания образца.

4.3.2 . На диаграмме (черт. 3 ) откладывают на оси абсцисс отрезок ОВ, равный заданной остаточной деформации εс, и проводят из точки В линию ВА, параллельную ОС, до пересечения ее с кривой «нагрузка — деформация» (точка Q).

Ордината точки Q соответствует нагрузке Fcg используемой для определения предела текучести Rcg (например, R c 0,2 ).

В случае трудности определения направления ОС по диаграмме эту линию проводят на основании известного значения модуля Юнга.

4.4 . Определяют предел прочности при сжатии:

испытуемый образец нагружают, как указано в п. 4.2, до разрушения.

Наибольшая нагрузка, предшествующая разрушению образца, соответствует нагрузке Fcu , используемой для вычисления предела прочности при сжатии Rcm.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1 . Предел текучести при сжатии ( Rcg ), МПа, вычисляют по формуле

где S 0 минимальная начальная площадь поперечного сечения рабочей части образца, мм 2 ;

Fcg нагрузка, соответствующая пределу текучести, Н.

5.2 . Предел прочности при сжатии ( Rcm), МПа, вычисляют по формуле

где Fcu нагрузка, предшествующая разрушению образца, Н.

5.3 . За показатель предела прочности и предела текучести при сжатии принимают среднее арифметическое значение результатов испытаний не менее пяти образцов.

5.4 . Полученные результаты округляют до 10 МПа.

6. ПРОТОКОЛ ИСПЫТАНИЙ

В протоколе испытания указывают:

тип, размеры образцов и марку испытуемого сплава;

предел прочности и предел текучести при сжатии каждого из испытанных образцов и средние результаты испытания;

обозначение настоящего стандарта.

ПРИЛОЖЕНИЕ

Рекомендуемое

ИСО 4506-79

ТВЕРДЫЕ СПЛАВЫ. ИСПЫТАНИЕ НА СЖАТИЕ

1 . Назначение и область применения

Настоящий международный стандарт устанавливает метод определения предела прочности и предела текучести твердых сплавов при одноосных сжимающих нагрузках.

2 . Сущность метода

Образец, помещенный между двумя твердосплавными опорами, нагружают в осевом направлении до тех пор, пока не происходит ожидаемая деформация или пока образец не разрушится.

3 . Символы и определения

Минимальная первоначальная площадь поперечного сечения

(с индексом) Нагрузка, соответствующая пределу текучести, например:

Нагрузка, соответствующая напряжению, при котором пластическая деформация составляет 0,2 %

Критическая нагрузка, т.е. нагрузка в момент разрушения

(с индексом) Предел текучести, например:

Предел текучести при пластической деформации 0,2 %

Предел прочности при сжатии

Машина для испытания должна быть сконструирована таким образом, чтобы нагрузки можно было прилагать с равномерной скоростью и так, чтобы в пределах данного диапазона измерений максимальная ошибка при нагружении составляла ± 1 %.

Испытуемый образец помещают между двумя хорошо центрированными и жестко закрепленными опорами из твердого сплава твердостью не менее 1600 HV (черт. 1). Контактные поверхности должны быть перпендикулярны к оси нагружения и параллельны друг другу с точностью 0,5 мкм/мм.

Твердосплавная опора

5 . Образец для испытаний

5.1 . Размеры испытуемого образца должны соответствовать указанным на черт. 2 . Торцовые и цилиндрические поверхности расширенных концов должны подвергаться шлифованию. Другие поверхности шлифованию не подвергаются. (Шлифование или полирование может повлиять на результат испытания).

5.2 . Минимальный диаметр испытуемого образца должен быть измерен с точностью ± 0,02 мм.

6 . Методика испытаний

6.1 . Скорость увеличения напряжения

Скорость приложения нагрузки должна быть, по возможности, равномерной, и любые изменения в скорости должны производиться плавно, без толчков. Скорость не должна превышать 8000 Н/с, что соответствует приблизительно 100 Н/(мм 2 /с).

6.2 . Определение предела текучести

6.2.1 . Предел текучести при пластической деформации 0,2 % определяют в соответствии с черт. 3 . Метод характерен почти для всех металлов тем, что если снять нагрузку после того, как превышен предел упругости D, кривая «нагрузка-деформация» принимает вид прямой, которая приблизительно параллельна кривой нагружения, лежащей ниже предела упругости.

6.2.2 . Определение предела текучести с использованием графического метода пересечения кривых проводят следующим образом:

6.2.2.1 . Прикладывают предварительную нагрузку не более той, которая требуется для того, чтобы испытуемый образец сохранял правильное положение в машине.

6.2.2.2 . Определяют кривую «нагрузка-деформация».

Примечание. Из-за малой длины испытуемой зоны и твердости материала имеют место практические затруднения, связанные с измерением изменений длины с помощью калибров смещения зажимного типа (экстензометров). Поэтому рекомендуется измерять изменения в длине с помощью проволочного тензодатчика.

В центре зоны испытания должны быть прикреплены симметрично два или четыре датчика. Рабочая длина датчиков не должна превышать 8 мм. Полученные результаты представляют среднюю величину измерений длины зоны испытания.

6.2.2.3 . На графике, показанном на черт. 3 , проводят отрезок ОВ, равный заданной остаточной деформации, и проводят от точки В линию ВА параллельно ОС. Ордината Fc точки пересечения Q имеет значение Fcq и представляет нагрузку, соответствующую пределу текучести.

Иногда трудно определить направление линии ОС по диаграмме; в таком случае эту линию можно провести на основе известного значения модуля Юнга.

Образец для испытания (25 координат от а до y имеют интервалы в 1 мм)

Предел текучести единицы измерения

Пределом текучести называют механическую характеристику материала, характеризующую напряжение, при котором деформации продолжают расти без увеличения нагрузки.

Обозначение σ т
Единица измерения – Паскаль [Па] либо кратные [МПа].

На диаграмме напряжений (рис. 1) обозначается точкой, в которой начинается практически горизонтальный участок диаграммы, называемый площадкой текучести.

Рис. 1. Предел текучести

Это важный параметр, с помощью которого рассчитываются допустимые напряжения для пластичных материалов.

После прохождения предела текучести в металле образца начинают происходить необратимые изменения, перестраивается кристаллическая решетка металла, появляются значительные пластические деформации. При этом металл самоупрочняется, об этом говорит то, что после площадки текучести деформации растут при возрастающем значении растягивающей силы.

Условный предел текучести

В случаях, когда на диаграмме напряжений нет выраженной площадки текучести, определяют так называемый условный предел текучести σ 0,2. Это величина напряжений, при которых относительные остаточные деформации равны 0,2%.

Рис. 2. Условный предел текучести

Для его определения (рис. 2) вдоль оси ε откладывается значение равное 0,2%, откуда проводится луч параллельный начальному участку диаграммы напряжений.

Точка пересечения луча с линией диаграммы есть условный предел текучести для данного материала.

Предел текучести при растяжении

Предел текучести при растяжении указывает на то, при каком значении напряжения предел прочности при растяжении остается постоянным или уменьшается, несмотря на рост удлинения. Иными словами, предел текучести наступает тогда, когда происходит переход из области упругой в область пластической деформации материала. Предел текучести также можно определить только путем тестирования стержня болта.

Предел текучести при растяжении измеряется в H/мм² и обозначается:

  • σт или R eLдля крепежа, произведенного в соответствии с ГОСТ-стандартом;
  • R eLдля крепежа, произведенного в соответствии с DIN -стандартом.

Прочностные характеристики болта закодированы в классе прочности изделия. Для болтов это две цифры, разделенные точкой.

Обозначение класса прочности состоит из двух цифр:

а) Первая цифра обозначения, умноженная на 100 (×100) соответствует значению предела прочности на разрыв (временному сопротивлению) σ (Rm) в Н / мм² .

б) Вторая цифра обозначения соответствует 1/10 отношения номинального значения предела текучести к временному сопротивлению в процентах. Произведение указанных двух цифр соответствует 1/10 номинального значения предела текучести σ т ( R eL ) в Н/мм²

Пример 1: Болт М10х50 кл. пр. 8.8

Соотношение σ т ( R eL ) / σ .(Rm) = 80%

Разрушающая нагрузка Рр = σ B.(Rm) ×Аs = 800×58,0= 46400 Н.

Нагрузка на пределе текучести Рт = σ т ( ReL ) × Аs = 640×58,0= 37120 Н.

где Аs — номинальная площадь сечения.

Временное сопротивление на разрыв по некоторым болтам может быть закодировано в трехзначном числе. Умножение трехзначного числа на 10 позволяет определить предел прочности на разрыв (временное сопротивление) σ B (Rm) в Н/мм².

Пример 2: Болт М24х100.110 ГОСТ 22353-77

σ B (Rm) = 110х10 = 1100 Н/мм 2 (МПа).

Перевод единиц измерения: 1 Па = 1Н/м²; 1 МПа = 1 Н/мм² = 10 кгс/см²

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1] , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ .

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

О прочности бетона в МПа, таблица и единицы измерения

О бетоне уже написаны горы справочной литературы. Зарываться в нее обычному застройщику нет смысла, ему достаточно знать, что такое прочность бетона в МПа, таблицу конкретных значений этого показателя и как эти цифры можно использовать.

Итак, прочность бетона (ПБ) на сжатие — это самый главный показатель, которым характеризуется бетон.

Конкретное цифровое значение этого показателя называется Классом бетона (В). То есть под этим параметром понимают кубиковую прочность, которая способна выдержать прилагаемое давление в МПа с фиксированным процентом вероятности разрушение образца не более 5 экземпляров из сотни.

Это академическая формулировка.

Но на практике строитель обычно пользуется другими параметрами.

Существует также такой показатель ПБ, как марка (М). Этот предел прочности бетона измеряется в кгс/см2. Если свести все данные о прочности бетона в МПа и кгс/см2 в таблицу, то она будет иметь вот такой вид.

Как обычно проводятся испытания на прочность? Бетонный куб размерами 150x150x150 мм берется из заданной области бетонной смеси, крепится с металлической специальной форме и подвергается нагрузке. Отдельно следует сказать о том, что подобная операция производится, как правило, на 28-е сутки после укладки смеси.

Что дают застройщику числовые значения данных (выраженных в МПа или) этой таблицы прочности бетона?

Они помогают правильно определить область применения продукта.

Например, изделие В 15 идет на сооружение ж/б монолитных конструкций, рассчитанных под конкретную нагрузку. В 25 — на изготовление монолитных каркасов жилых зданий и т.д.

Какие факторы влияют на ПБ?

  • Содержание цемента. Понятно, что ПБ будет тем выше (впрочем, только до известного предела), чем выше содержание цемента в смеси.
  • Активность цемента. Здесь зависимость линейная и повышенная активность предпочтительней.
  • Водоцементное отношение (В/Ц). С уменьшением В/Ц прочность увеличивается, с возрастанием, наоборот, уменьшается.

Как быть, если возникла необходимость перевести МПа в кгс/см2? Существует специальная формула.

0,098066 МПа = 1 кгс/см2 .

Или (если немного округлить) 10 МПа = 100 кгс/см2.

Далее следует воспользоваться данными таблицы прочности бетона и произвести нужные расчеты.

Один ответ на О прочности бетона в МПа, таблица и единицы измерения

При лабораторных исследованиях при какой нагрузке происходит разрушения М300 ?
При его номинальной прочности 300кгс/см.кв

Очень хочется выслушать мнение специалистов.

Написать ответ Cancel reply

Рубрики

  • Быстровозводимые дома
  • Строительные калькуляторы онлайн
  • Каркасные (канадские) дома
  • Щитовые (панельные) дома
    • SIP панели
    • Сайдинг
  • Модульные сооружения
  • Дома на основе ЛСТК
  • Здания из газобетона
  • Сооружения из пеноблоков
  • Деревянные дома
    • Дома из бруса
  • Пиломатериалы
  • Монолитный дом
  • Полезности и советы
    • Это можем сами
    • Конструкции и технологии
    • Материалы
    • Интерьер
  • Справочные данные
    • Веса
    • Размеры
    • Нормы расхода
    • Характеристики
  • Право и закон

Последние комментарии

  • Фёдор к записи О прочности бетона в МПа, таблица и единицы измерения
  • Артем к записи Отзывы покупателей о звукоизоляции Соноплат Комби
  • Вячеслав к записи Недостатки ондувиллы в отзывах
  • Сергей к записи Какая металлочерепица лучше для крыши – отзывы, наблюдения, видео, советы
  • Рита к записи Ванна из литьевого мрамора, отзывы, споры, выводы, советы

Пишите нам

Ваше сообщение было успешно отправлено. Спасибо!

Предел прочности единицы измерения

Products and Services / Standards & Publications / Standards Products

If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
ASTM D2166/D2166M — 16

Стандартный метод испытания на предел прочности при одноосном сжатии связного грунта

Active Standard ASTM D2166 / D2166M Developed by Subcommittee: D18.05

Book of Standards Volume: 04.08

&nbspFormatPagesPrice&nbsp
PDF9$97.00 &nbsp ADD TO CART

Historical Version(s) — view previous versions of standard

Translated Standard(s): English

5.2 Samples of soils having slickensided or fissured structure, samples of some types of loess, very soft clays, dry and crumbly soils and varved materials, or samples containing significant portions of silt or sand, or both (all of which usually exhibit cohesive properties), frequently display higher shear strengths when tested in accordance with Test Method D2850 . Also, unsaturated soils will usually exhibit different shear strengths when tested in accordance with Test Method D2850 .

5.3 If tests on the same sample in both its intact and remolded states are performed, the sensitivity of the material can be determined. This method of determining sensitivity is suitable only for soils that can retain a stable specimen shape in the remolded state.

Note 2: For soils that will not retain a stable shape, a vane shear test or Test Method D2850 can be used to determine sensitivity.

Note 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

Significance and Use

5.1 The primary purpose of the unconfined compression test is to quickly obtain a measure of compressive strength for those soils that possess sufficient cohesion to permit testing in the unconfined state.

5.2 Samples of soils having slickensided or fissured structure, samples of some types of loess, very soft clays, dry and crumbly soils and varved materials, or samples containing significant portions of silt or sand, or both (all of which usually exhibit cohesive properties), frequently display higher shear strengths when tested in accordance with Test Method D2850 . Also, unsaturated soils will usually exhibit different shear strengths when tested in accordance with Test Method D2850 .

5.3 If tests on the same sample in both its intact and remolded states are performed, the sensitivity of the material can be determined. This method of determining sensitivity is suitable only for soils that can retain a stable specimen shape in the remolded state.

Note 2: For soils that will not retain a stable shape, a vane shear test or Test Method D2850 can be used to determine sensitivity.

Note 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

1. Область применения

1.1 Настоящий метод испытаний охватывает определение предела прочности при одноосном сжатии связного грунта в нетронутом, нарушенном или восстановленном состоянии с использованием приложения осевой нагрузки с контролируемой деформацией.

1.2 Настоящий метод испытания дает приблизительное значение прочности связных грунтов относительно общих напряжений.

1.3 Настоящий метод испытания применим только к связным материалам, которые не вытесняют или не выделяют воду (воду, вытесненную из грунта из-за деформации или уплотнения) во время нагружающей части испытания и которые сохраняют действительную прочность после того, как перестают действовать ограничивающие давления, например, глины или цементованные грунты. Сухие и крошащиеся грунты, расщепленные материалы или ленточная глина, илистые грунты, торф и пески не могут быть испытаны с помощью настоящего метода для получения значимых значений предела прочности при одноосном сжатии.

ПРИМЕЧАНИЕ 1 — Определение рыхлой, недренированной прочности связных грунтов с помощью поперечного ограничения охвачено в Метод испытания D2850.

1.4 Настоящий метод испытания не является заменой Метода испытания D2850.

1.5 Все наблюдаемые и рассчитанные значения должны соответствовать руководящим указаниям по значащим разрядам чисел и округлению, установленным в Практическом руководстве D6026, если настоящий стандарт их не заменяет.

1.5.1 Процедуры, используемые в настоящем метод е испытания для того, чтобы установить то, каким образом собираются/записываются данные, считаются стандартомотрасли. Более того, они являются репрезентативными для значащих разрядов чисел, которые, как правило, должны бытьсохранены. Использованные процедуры не учитывают отклонение материала, направленные на получение данных, узкоспециализированные исследования или любые факты, которые необходимо учесть для достижения целей пользователя; поэтому распространенной практикой является увеличение или уменьшение значащих разрядов чисел полученных данных, чтобы привести их в соответствие с этими факторами, которые необходимо учитывать. Учет значащих разрядов чисел, использованных в методах анализа для инженерного проектирования, выходит за пределы области применения настоящего метода испытания.

1.6 Значения, указанные в единицах системы дюйм-фунт и единицах СИ, должны рассматриваться в качестве стандартных. Значения, указанные в каждой системе измерений, могут не быть точными эквивалентами; таким образом, каждая система должна использоваться независимо от другой. Комбинирование значений из двух систем измерений может привести кнесоответствию настоящему стандарту.

1.6.1 Гравитационная система единиц системы дюйм-фунт используется при взаимодействии с единицами системы дюймфунт. В этой системе «фунт» (фунт-сила) представляет собой единицу измерения силы (вес) в то время, как единицами измерения массы являются «слаги». Рационализированная единица измерения «слаг» не приводится, если только не задействованы динамические расчеты (F = ma).

1.6.2 Общепринятой практикой в инженерной/конструкторской профессии является параллельно с этим использовать фунты в качестве единиц и массы (фунт-масса), исилы (фунт-сила). Это в неявной форме соединяет две отдельные системы единиц измерения; то есть, абсолютную игравитационную системы. С научной точки зрения нежелательно комбинировать использование двух отдельных наборов единиц системы дюйм-фунт в рамках одного стандарта. Как уже было сказано, стандарт включает в себя гравит ационную систему единиц системы дюйм-фунт и не использует/представляет массу в единицах измерения «слаги». Однако, использование весов или шкал, записывающих массу в фунтах (фунт-масс) или плотность в фунт-сила/фут , не должно рассматриваться как не соответствие настоящему стандарту.

1.7 Настоящий стандарт не ставит целью описание всех проблем безопасности, если они имеются, связанных с его использованием. В обязанности пользователя настоящего стандарта входит определение надлежащих методов техники безопасности и охраны труда, а также определение применимости нормативных ограничений перед его использованием.

Предел прочности на растяжение

Предел прочности при растяжении ( UTS ), часто сокращаемый до предела прочности на разрыв ( TS ), предела прочности или в уравнениях [1] [2] [3] — это максимальное напряжение, которое может выдержать материал при растяжении или растяжении перед разрушением. В хрупких материалах предел прочности на разрыв близок к пределу текучести , тогда как в пластичных материалах предел прочности может быть выше. F ту < displaystyle F _ < text >>

Предел прочности при растяжении обычно определяется путем проведения испытания на растяжение и регистрации зависимости инженерного напряжения от деформации . Наивысшая точка кривой напряжение-деформация — это предел прочности при растяжении и имеет единицы измерения напряжения.

Предел прочности на растяжение редко используется при проектировании пластичных элементов, но он важен для хрупких элементов. Они сведены в таблицу для обычных материалов, таких как сплавы , композитные материалы , керамика , пластмассы и дерево.

СОДЕРЖАНИЕ

  • 1 Определение
    • 1.1 Пластичные материалы
  • 2 Тестирование
  • 3 Типичные значения прочности на разрыв
  • 4 См. Также
  • 5 ссылки
  • 6 Дальнейшее чтение

Определение [ править ]

Предел прочности материала при растяжении — это интенсивное свойство ; поэтому его значение не зависит от размера испытуемого образца. Однако, в зависимости от материала, это может зависеть от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, а также температура окружающей среды и материала для испытаний.

Некоторые материалы ломаются очень резко, без пластической деформации , что называется хрупким разрушением. Другие, которые являются более пластичным, включая большинство металлов, испытывают некоторую пластическую деформацию и , возможно , сужения до того перелома.

Прочность на растяжение определяется как напряжение, которое измеряется как сила на единицу площади. Для некоторых неоднородных материалов (или для собранных компонентов) это может быть выражено как сила или как сила на единицу ширины. В Международной системе единиц (СИ) единицей измерения является паскаль (Па) (или кратное ему, часто мегапаскали (МПа), с использованием префикса СИ мега ); или, что эквивалентно паскалям, ньютонам на квадратный метр (Н / м 2 ). Обычная единица измерения в США — фунты на квадратный дюйм (фунт / дюйм 2). или psi). Килофунды на квадратный дюйм (ksi, или иногда kpsi) равны 1000 psi и обычно используются в Соединенных Штатах при измерении прочности на разрыв.

Пластичные материалы

  • 1: Абсолютная сила
  • 2: Предел текучести (предел текучести)
  • 3: Разрыв
  • 4: Область деформационного упрочнения
  • 5: область шеи
  • A: Видимое напряжение ( F / A 0 )
  • B: Фактическое напряжение ( F / A )

Многие материалы могут демонстрировать линейное упругое поведение , определяемое линейной зависимостью напряжения от деформации , как показано на рисунке 1 до точки 3. Упругое поведение материалов часто распространяется в нелинейную область, представленную на рисунке 1 точкой 2 ( «предел текучести»), до которого деформации полностью восстанавливаются при снятии нагрузки; то есть образец, нагруженный упруго при растяжении , удлиняется, но при разгрузке возвращается к своей первоначальной форме и размеру. За пределами этой упругой области для пластичных материалов, таких как сталь, деформации пластичны.. Пластически деформированный образец не возвращается полностью к своим первоначальным размерам и форме при разгрузке. Для многих приложений пластическая деформация неприемлема и используется в качестве конструктивного ограничения.

После предела текучести пластичные металлы проходят период деформационного упрочнения, при котором напряжение снова увеличивается с увеличением деформации, и они начинают сужаться , поскольку площадь поперечного сечения образца уменьшается из-за пластического течения. В достаточно пластичном материале, когда образование шейки становится значительным, это вызывает изменение инженерной кривой напряжения-деформации (кривая A, рисунок 2); это связано с тем, что инженерное напряжение рассчитывается исходя из исходной площади поперечного сечения до образования шейки. Точка разворота — это максимальное напряжение на инженерной кривой «напряжение – деформация», а координата инженерного напряжения этой точки — это предел прочности на растяжение, определяемый точкой 1.

Предел прочности на растяжение не используется при проектировании пластичных статических элементов, поскольку методы проектирования диктуют использование предела текучести . Однако он используется для контроля качества из-за простоты тестирования. Он также используется для приблизительного определения типов материалов для неизвестных образцов. [4]

Предел прочности на разрыв — это общий инженерный параметр для конструктивных элементов, изготовленных из хрупкого материала, поскольку такие материалы не имеют предела текучести . [4]

Тестирование [ править ]

Как правило, испытание включает взятие небольшого образца с фиксированной площадью поперечного сечения, а затем его вытягивание тензометром с постоянной скоростью (изменение измерительной длины, деленной на исходную измерительную длину) до тех пор, пока образец не сломается.

При испытании некоторых металлов твердость при вдавливании линейно коррелирует с пределом прочности на разрыв. Это важное соотношение позволяет осуществлять экономически важный неразрушающий контроль поставок объемного металла с помощью легкого, даже портативного оборудования, такого как портативные твердомеры по Роквеллу . [5] Эта практическая взаимосвязь помогает обеспечению качества в металлообрабатывающей промышленности выходить далеко за рамки лабораторных и универсальных испытательных машин .

Механические свойства (прочность, упругость, пластичность, Ккк, твердость, истираемость, хрупкость, ударная прочность) – определение, формулы, единицы измерения, взаимосвязь с другими свойствами, примеры численных значений, методы определения.

Прочность – способность материала сопротивляться разрушению от внутренних напряжений , возникающих под действием внешних сил . Ее оценивают пределом прочности . Единица измерений – кгс / см 2 , МПа . Наиболее часто встречаются : предел прочности при сжатии; прочность на растяжение при изгибе .

Прочность при сжатии равна отношению разрушающей нагрузки P разр . к площади ее приложения — F . Единица измерений прочности – кгс / см 2 , МПа :

Прочность на растяжение при трехточечном изгибе определяется по фор — муле :

Прочность на растяжение при чистом изгибе определяется по формуле :

Упругостью твердого тела называется его свойство деформироваться под нагрузкой и самопроизвольно восстанавливать форму после прекращения внешнего воздействия . Она является обратимой деформацией. Единица измерения – МПа .

Пластичность – это свойство твердого тела изменять свою форму и раз — меры под действием внешних сил без нарушения сплошности структуры . После снятия нагрузки образуется остаточная необратимая деформация .

Для оценки эффективности материала используется формула , связывающая его прочность — R и относительную среднюю плотность – pcр . Этот показатель называется удельной прочностью R уд . или коэффициентом конструктивного качества – KKK:

Хрупкость – это свойство твердого тела разрушаться практически без пластической деформации. Единица измерения – МПа .

Твёрдостью твердого тела или материала называется его способность сопротивляться вдавливанию или царапанию . Для минералов применяется шкала Мооса, которая показывает увеличение твердости по мере возрастания номера минерала в этой шкале . Твёрдость древесины, металлов , керамики , бетона и других материалов определяют , вдавливая в них стальной шарик ( метод Бринелля ), алмазную пирамиду ( методы Роквелла и Виккерса ). Твёрдость определяется нагрузкой, отнесенной к площади отпечатка. Единица измерения – МПа.

Чем выше твердость , тем ниже истираемость строительных материалов . Истираемость – И оценивается потерей первоначальной массы образца мате — риала , отнесенной к площади поверхности истирания и вычисляется по форму — ле , г / см 2 :

Поможем написать любую работу на аналогичную тему

Механические свойства (прочность, упругость, пластичность, Ккк, твердость, истираемость, хрупкость, ударная прочность) – определение, формулы, единицы измерения, взаимосвязь с другими свойствами, примеры численных значений, методы определения.

Механические свойства (прочность, упругость, пластичность, Ккк, твердость, истираемость, хрупкость, ударная прочность) – определение, формулы, единицы измерения, взаимосвязь с другими свойствами, примеры численных значений, методы определения.

Механические свойства (прочность, упругость, пластичность, Ккк, твердость, истираемость, хрупкость, ударная прочность) – определение, формулы, единицы измерения, взаимосвязь с другими свойствами, примеры численных значений, методы определения.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector