От чего зависит коэффициент вязкости жидкости
От чего зависит коэффициент вязкости жидкости
Лабораторная работа № 204
ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА
Цель работы: изучить метод Стокса, определить коэффициент динамической вязкости глицерина.
Приборы и принадлежности:
стеклянный цилиндрический сосуд с глицерином,
1. ВЯЗКОСТЬ ЖИДКОСТИ. ЗАКОН СТОКСА
В жидкостях и газах при перемещении одних слоев относительно других возникают силы внутреннего трения, или вязкости, которые определяются законом Ньютона:
(1)
где h — коэффициент внутреннего трения, или коэффициент динамической вязкости, или просто вязкость; модуль градиента скорости, равный изменению скорости слоев жидкости на единицу длины в направлении нормали (в нашем случае вдоль оси y ) к поверхности S соприкасающихся слоев (рис. 1).
Согласно уравнению (1) коэффициент вязкости h в СИ измеряется в Па × с или в кг/( м × с ).
Механизм внутреннего трения в жидкостях и газах неодинаков, т.к. в них различен характер теплового движения молекул. Подробное изложение вязкости жидкости рассмотрено в работе № 203, вязкости газов – в работе № 205.
Вязкость жидкости обусловлена молекулярным взаимодействием, ограничивающим движение молекул. Каждая молекула жидкости находится в потенциальной яме, создаваемой соседними молекулами. Поэтому молекулы жидкости совершают колебательные движения около положения равновесия, то есть внутри потенциальной ямы. Глубина потенциальной ямы незначительно превышает среднюю кинетическую энергию, поэтому, получив дополнительную энергию при столкновении с другими молекулами, она может перескочить в новое положение равновесия. Энергия, которую должна получить молекула, чтобы из одного положения перейти в другое, называется энергией активации W , а время нахождения молекулы в положении равновесия – временем «оседлой жизни» t . Перескок молекул между соседними положениями равновесия является случайным процессом. Вероятность того, что такой перескок произойдет за время одного периода t 0 , в соответствии с законом Больцмана, составляет
(2)
Величина, обратная вероятности перехода молекулы определяет среднее число колебаний, которое должна совершить молекула, чтобы покинуть положение равновесия. Среднее время «оседлой жизни» молекулы
. Тогда
(3)
где k – постоянная Больцмана; средний период колебаний молекулы около положения равновесия.
Коэффициент динамической вязкости зависит от : чем реже молекулы меняют положение равновесия, тем больше вязкость. Используя модель скачков молекул, советский физик Я.И.Френкель показал, что вязкость изменяется по экспоненциальному закону:
(4)
где А – константа, определяемая свойствами жидкости.
Формула (4) является приближенной, но она достаточно хорошо описывает вязкость жидкости, например, воды в интервале температур от 5 до 100 ° С, глицерина – от 0 до 200 ° С.
Из формулы (4) видно, что с уменьшением температуры вязкость жидкости возрастает. В ряде случаев она становится настолько большой, что жидкость затвердевает без образования кристаллической решетки. В этом заключается механизм образования аморфных тел.
При малых скоростях движения тела в жидкости слой жидкости, непосредственно прилегающий к телу, прилипает к нему и движется со скоростью тела. По мере удаления от поверхности тела скорость слоев жидкости будет уменьшаться, но они будут двигаться параллельно. Такое слоистое движение жидкости называется ламинарным. При больших скоростях движения жидкости ламинарное движение жидкости становится неустойчивым и сменяется турбулентным, при котором частицы жидкости движутся по сложным траекториям со скоростями, изменяющимися беспорядочным образом. В результате происходит перемешивание жидкости и образуются вихри.
Характер движения жидкости определяется безразмерной величиной Re , называемой числом Рейнольдса. Это число зависит от формы тела и свойств жидкости. При движении шарика радиусом R со скоростью U в жидкости плотностью r ж
(5)
При малых Re ( — 2 мм движется со скоростью 5 — 10 см/ c в вязкой жидкости, например в глицерине, движение жидкости будет ламинарным. В этом случае на тело будет действовать сила сопротивления, пропорциональная скорости
(6)
где r – коэффициент сопротивления. Для тела сферической формы
Сила сопротивления шарика радиусом R примет вид:
(7)
Формула (7) называется законом Стокса.
2. ОПИСАНИЕ РАБОЧЕЙ УСТАНОВКИ И МЕТОДА
Одним из существующих методов определения коэффициента динамической вязкости является метод Стокса. Суть метода заключается в следующем. Если в сосуд с жидкостью бросить шарик плотностью большей, чем плотность жидкости ( r > r ж ), то он будет падать (рис. 2). На движущийся в жидкости шарик действует сила внутреннего трения (сила сопротивления) , тормозящая его движение и направленная вверх. Если считать, что стенки сосуда находятся на значительном расстоянии от движущегося шарика, то величину силы внутреннего трения можно определить по закону Стокса (6).
Вязкость
Материал из ТеплоВики — энциклопедия отоплении
Вязкость (внутреннее трение) (англ. viscosity) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно. Основной закон вязкого течения был установлен И. Ньютоном (1687): В применении к жидкостям различают вязкость:
- Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии. В системе СИ динамическая вязкость выражается в Па×с (паскаль-секунда), внесистемная единица П (пуаз).
- Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ.
ν= µ /ρ,
- ν, м 2 /с – кинематическая вязкость;
- μ, Па×с – динамическая вязкость;
- ρ, кг/м 3 – плотность жидкости.
В системе СИ кинематическая вязкость выражается в м 2 /с (квадратный метр на секунду), внесистемная единица Ст(стокс).
Прибор для измерения вязкости называется вискозиметром.
Содержание
Сила вязкого трения
Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость частиц среды плавно меняется от скорости одного тела до скорости другого тела.
Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.
Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя. Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.
Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды. При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности.
Сила сопротивления среды зависит от:
- ее вязкости
- от формы тела
- от скорости движения тела относительно среды.
Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:
Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.
Вязкость газов
Вязкость газов (явление внутреннего трения) — это появление сил трения между слоями газа, движущимися друг относительно друга параллельно и с разными по величине скоростями. Вязкость газов увеличивается с ростом температуры
Взаимодействие двух слоев газа рассматривается как процесс, в ходе которого от одного слоя к другому передается импульс. Сила трения на единицу площади между двумя слоями газа, равная импульсу, передаваемому за секунду от слоя к слою через единицу площади, определяется законом Ньютона:
где:
dν /dz — градиент скорости в направлении перпендикулярном направлению движения слоев газа.
Знак минус указывает, что импульс переносится в направлении убывания скорости.
η — динамическая вязкость.
ρ — плотность газа,
(ν) — средняя арифметическая скорость молекул
λ — средняя длина свободного пробега молекул.
Вязкость некоторых газов (при 0°C)
Вещество | Вязкость 10 -5 кг/(м*с) |
---|---|
Азот | 1,67 |
Аммиак | 0,93 |
Водород | 0,84 |
Воздух | 1,72 |
Гелий | 1,89 |
Гелий | 1,89 |
Кислород | 1,92 |
Метан | 1,04 |
Углекислый газ | 1,40 |
Хлор | 1,29 |
Вязкость жидкости
Вязкость жидкости — это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока.
Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями. Если между соседними слоями жидкости выделить некоторую площадку S, то согласно гипотезе Ньютона:
- μ — коэффициент вязкого трения;
- S – площадь трения;
- du/dy — градиент скорости
Величина μ в этом выражении является динамическим коэффициентом вязкости, равным:
- τ – касательное напряжение в жидкости (зависит от рода жидкости).
Физический смысл коэффициента вязкого трения
Физический смысл коэффициента вязкого трения — число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.
На практике чаще используется кинематический коэффициент вязкости, названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности:
Единицы измерения коэффициента вязкого трения:
- Н·с/м 2 ;
- кГс·с/м 2
- Пз (Пуазейль) 1(Пз)=0,1(Н·с/м 2 ).
Анализ свойства вязкости жидкости
Для капельных жидкостей вязкость зависит от температуры t и давления Р, однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.
Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:
- μt — коэффициент динамической вязкости при заданной температуре;
- μ0 — коэффициент динамической вязкости при известной температуре;
- Т — заданная температура;
- Т0 — температура, при которой измерено значение μ0;
- e – основание натурального логарифма равное 2,718282.
Зависимость относительного коэффициента динамической вязкости от давления описывается формулой:
- μР — коэффициент динамической вязкости при заданном давлении,
- μ0 — коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
- Р — заданное давление,;
- Р0 — давление, при которой измерено значение μ0;
- e – основание натурального логарифма равное 2,718282.
Влияние давления на вязкость жидкости проявляется только при высоких давлениях.
Ньютоновские и неньютоновские жидкости
Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):
где σij — тензор вязких напряжений.
Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.
С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.
Понятие динамической и кинетической вязкости
Вязкостью называется свойство жидкости сопротивляться внешнему воздействию благодаря внутреннему трению, возникающему между слоями.
Для определения вязкости существует два основных параметра: динамическая вязкость и кинематическая вязкость, которые связаны между собой соотношением:
Где ν – кинематическая вязкость, м 2 /с;
µ — динамическая вязкость, Па*с;
ρ – плотность жидкости, кг/м 3 .
Между слоями жидкости, движущимися друг относительно друга, возникает сила. Эта сила прямо пропорциональна скорости движения и площади соприкосновения.
В 1687 году И. Ньютоном был установлен закон вязкого течения жидкости:
где τ – касательные напряжения;
Коэффициент пропорциональности µ и назвали динамической вязкостью жидкости.
Динамическая и кинематическая вязкости зависят от температуры рабочей среды. Причем для газов и жидкостей эта зависимость различна. Это связано с различием во взаимодействии молекул. Для капельных жидкостей оба коэффициента убывают с возрастанием температуры.
Для определения вязкости используются специальные приборы – вискозиметры (U-образная стеклянная трубка). Одно из колен вискозиметра содержит впаянный капилляр, который оканчивается шариком. Под шариком и над ним нанесены метки, которые ограничивают определенный объем.
Для определения вязкости жидкости необходимо выбрать эталонную жидкость, вязкость которой является известной величиной. Для определения вязкости рабочей жидкости используется формула:
где µ — вязкость рабочей жидкости;
µ0 – вязкость эталонной жидкости;
t – время истечения через капилляр исследуемой жидкости;
t0 – время истечения через капилляр эталонной жидкости;
ρ – плотность исследуемой жидкости;
ρ0 – плотность эталонной жидкости.
Так же существует понятие условной вязкости. Это отношение времени истечения через вискозиметр испытуемой жидкости при рабочей температуре к времени истечения дистиллированной воды при температуре 20°С (водное число). Водное соотношение является постоянной величиной для каждого прибора. Это соотношения выражается условными градусами.
где ВУ – условная вязкость;
Еще один метод определения вязкости жидкости – метод Стокса.
Он заключается в бросании различных шариков в жидкость и измерении скорости их падения. На шарик действуют три силы: сила тяжести, выталкивающая сила и сила сопротивления окружающей среды.
где Fтяж – сила тяжести;
m – масса шарика;
r – радиус шарика;
ρш – плотность шарика.
где FA – выталкивающая сила.
где Fc – сила сопротивления окружающей среды;
ϑ – скорость движения шарика.
Подставив выражения для сил, действующих на шарик в итоговое уравнение, можно найти вязкость жидкости:
Вязкость жидкости
Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.
Содержание статьи
Физический смысл вязкости
Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1
Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.
Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.
Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде
где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения
μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.
Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.
Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу
Вязкость кинематическая, динамическая и абсолютная
Теперь определимся с различными понятиям вязкости:
Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.
Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.
Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.
Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести
Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.
Коэффициент вязкости жидкости
В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости
где ρ – плотность жидкости.
Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.
В физической системе единиц кинематическая вязкость имеет единицу измерения см 2 /с и называется Стоксом(Ст).
Вязкость некоторых жидкостей
Жидкость | t, °С | ν, Ст |
Вода | 0 | 0,0178 |
Вода | 20 | 0,0101 |
Вода | 100 | 0,0028 |
Бензин | 18 | 0,0065 |
Спирт винный | 18 | 0,0133 |
Керосин | 18 | 0,0250 |
Глицерин | 20 | 8,7 |
Ртуть | 0 | 0,00125 |
Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью
Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.
Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.
Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.
Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.
Методы измерения вязкости. Метод Стокса.
Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.
Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.
Существует следующие методы определения вязкости жидкости.
Капиллярный метод.
Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.
Метод по Гессе.
Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.
Ротационный метод.
Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.
Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.
Метод Стокса
Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.
Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.
Видео по теме вязкости
Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.
Коэффициент вязкости
Вя́зкость (вну́треннее тре́ние) — одно из трёх явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.
Различают динамическую вязкость (единицы измерения: пуаз, Па·с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объема через калиброванное отверстие под действием силы тяжести.
Прибор для измерения вязкости называется вискозиметром.
Содержание
Вязкость газов
В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле
,
где — средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.
Вторая вязкость
Вторая вязкость — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.
Вязкость жидкостей
Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон Ньютона: Коэффициент вязкости η может быть получен на основе соображений о движениях молекул. Очевидно, что η будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде: η = Ce w / kT
Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества VM . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.
Ньютоновские и неньютоновские жидкости
Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. Если вязкость падает при увеличении скорости, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.
Вязкость аморфных материалов
Вязкость аморфных материалов (например, стекла или расплавов), это термически активизируемый процесс [1] :
где Q — энергия активации вязкости (кДж/моль), T — температура (К), R — универсальная газовая постоянная (8,31 Дж/моль•К) и A — некоторая постоянная.
Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q изменяется от большой величины QH при низких температурах (в стеклообразном состоянии) на малую величину QL при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда
. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса
: сильные материалы имеют RD , в то время как ломкие материалы имеют
.
Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:
с постоянными A1 , A2 , B , C и D , связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклования Tg это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Если температура существенно ниже температуры стеклования T , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса
с высокой энергией активации QH = Hd + Hm , где Hd — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm — энтальпия их движения. Это связано с тем, что при T аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При T > > Tg двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса
но с низкой энергией активации QL = Hm . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.
Сила вязкого трения
Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.
Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что тела придут в движение при наличии сколь угодно малой силы, то есть не существует трения покоя. Это отличает вязкое трение от сухого.
Примечания
- ↑ Я. И. Френкель. Кинетическая теория жидкостей. Ленинград, Наука, 1975.
См. также
- Уравнения Навье-Стокса
Ссылки
- Аринштейн А., Сравнительный вискозиметр ЖуковскогоКвант, № 9, 1983.
- Измерение вязкости нефтепродуктов — обзор методов и единиц измерения вязкости.
- R.H. Doremus. J. Appl. Phys., 92, 7619-7629 (2002).
- M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).
- M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
- Булкин П. С. Попова И. И.,Общий физический практикум. Молекулярная физика
- Статья в энциклопедии Химик.ру
Литература
- Я. И. Френкель. Кинетическая теория жидкостей. — Л.: «Наука», 1975.
Wikimedia Foundation . 2010 .
- Коэффициент гармоник
- Коэффициент де ритиса
Смотреть что такое «Коэффициент вязкости» в других словарях:
Коэффициент вязкости — показатель деформируемости, характеризующий скорость пластично вязкого течения сильнольдистого мерзлого грунта, зависящий от времени действия нагрузки и значения отрицательной температуры грунта. Источник: ГОСТ 30416 96: Грунты. Лабораторные… … Словарь-справочник терминов нормативно-технической документации
коэффициент вязкости — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN viscosity factorVFmodulus of viscosity … Справочник технического переводчика
коэффициент вязкости — klampos koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. coefficient of viscosity; dynamic viscosity; viscosity; viscosity factor vok. dynamische… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
коэффициент вязкости — Viscosity Coefficient Коэффициент вязкости Отношение напряжения сдвига к скорости сдвига в уравнении Ньютона для вязкого течения … Толковый англо-русский словарь по нанотехнологии. — М.
коэффициент вязкости — klampos koeficientas statusas T sritis fizika atitikmenys: angl. coefficient of viscosity; viscosity factor vok. Viskositätskoeffizient, m; Zähigkeitskoeffizient, m rus. коэффициент вязкости, m pranc. coefficient de viscosité, m … Fizikos terminų žodynas
Коэффициент вязкости кинематический — – отношение динамической вязкости жидкости или газа к их плотности, в качестве системной единицы измерения которой в СИ применяют м2/сек, а в системе СГС в качестве единицы кинематической вязкости применяют стокс. [Словарь основных терминов … Энциклопедия терминов, определений и пояснений строительных материалов
коэффициент вязкости горной породы — Параметр, количественно оценивающий вязкость и равный произведению предела прочности горной породы при сжатии на коэффициент пластичности. [ГОСТ Р 50544 93] Тематики горные породы Обобщающие термины физические свойства горных пород EN coefficient … Справочник технического переводчика
коэффициент вязкости шлака — Напр., используется для определения сжигания угля в циклонной топке. [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN slag viscosity factor … Справочник технического переводчика
Коэффициент вязкости динамический — – свойство жидкостей и газов, характеризующее их сопротивляемость скольжению или сдвигу, за единицу измерения которой принят 1 пуазейль (1 н·сек/м2), а в системе СГС – пуаз. [Словарь основных терминов, необходимых при проектировании,… … Энциклопедия терминов, определений и пояснений строительных материалов
коэффициент вязкости горной породы — 158 коэффициент вязкости горной породы Параметр, количественно оценивающий вязкость и равный произведению предела прочности горной породы при сжатии на коэффициент пластичности Источник: ГОСТ 30330 95: Породы горные. Термины и определения… … Словарь-справочник терминов нормативно-технической документации
Вязкость нефти
Вязкость — важнейшее технологическое свойство нефти. Классификация
Величина вязкости учитывается при оценке скорости фильтрации в пласте, при выборе типа вытесняющего агента, при расчете мощности насоса добычи нефти и др.
Параметр вязкость наиболее тесно отражает взаимодействие углеводородов и гетероатомных соединений и коррелирует со степенью их проявления.
Вязкость (абсолютная, динамическая) характеризует силу трения (внутреннего сопротивления), возникающую между 2 смежными слоями внутри жидкости или газа на единицу поверхности при их взаимном перемещении (рис 1).
Динамическая вязкость определяется по уравнению Ньютона:
где А — площадь перемещающихся слоев жидкости или газа ;
F — сила, требующаяся для поддержания разницы скоростей движения между слоями на величину dv;
dy — расстояние между движущимися слоями жидкости (газа);
dv — разность скоростей движущихся слоев жидкости (газа).
μ — коэффициент пропорциональности, абсолютная, динамическая вязкость.
Рис 1. Движение 2 х слоев жидкости относительно друг друга
Размерность динамической вязкости определяется из уравнения Ньютона:
система СИ — (Па*с, мПа*с), паскаль /сек;
система СГС — (пуаз (пз), сантипуз (спз)) = (г/ (см*сек)).
С вязкостью связан параметр — текучесть (j) — величина обратная вязкости:
Кроме динамической вязкости для расчетов используют также параметр Кинематическая вязкость — свойство жидкости оказывать сопротивление перемещению одной части жидкости относительно другой с учетом силы тяжести.
Единицы измерения кинематической вязкости:
система СИ — (м 2 /сек, мм 2 /се);
система СГС — (стокс (ст), сантистокс (сст)); сст =1·10-4 м 2 /сек.
Вязкость сепарированной нефти с возрастанием температуры уменьшается, а с возрастанием давления увеличивается.
С увеличением молекулярного веса фракции, температурного интервала выкипания фракции, плотности величина вязкости возрастает .
Вязкость нефти уменьшается с повышением количества углеводородного газа растворенного в ней, и тем больше, чем выше молекулярная масса газа (рис 2).
При увеличением молекулярной массы углеводородного компонента от СН4 к С4Н10, растворенного в нефти вязкость нефтей будет уменьшаться, за счет увеличения доли неполярных соединений (газ идеальная система).
Однако не все компоненты газа подчиняются такой закономерности.
С увеличением количества азота растворенного в нефти вязкость нефти в пластовых условиях будет возрастать.
С увеличением молекулярной массы жидкого углеводородного компонента от С5Н12 и выше, растворенного в нефти, ее вязкость будет возрастать за счет увеличения доли полярных компонентов (нефть неидеальная система).
Рис 2. Изменение вязкости нефти Балаханского месторождения при насыщении ее газом
Вязкость смесей аренов больше вязкости смесей алканов. Поэтому, нефть с высоким содержанием ароматических углеводородов более вязкая, чем нефть парафинового основания
Чем больше в нефти содержится смол и асфальтенов (больше полярных компонентов), тем выше вязкость.
Вязкость сырой нефти больше вязкости сепарированной.
Величина вязкости нефти коррелирует с величиной плотностью или удельным весом нефти.
Вязкость пластовой нефти всегда значительно отличается от вязкости сепарированной нефти, вследствие большого количества растворенного газа, содержащегося в ней, пластовых температур.
Повышение температуры вызывает уменьшение вязкости нефти (рис 3 а).
Повышение давления, ниже давления насыщения приводит к увеличению газового фактора и, как следствие, к уменьшению вязкости.
Повышение давления выше давления насыщения для пластовой нефти приводит к увеличению величины вязкости (рис 3 б).
Минимальная величина вязкости имеет место, когда давление в пласте становится равным пластовому давлению насыщения (рис 3 б).
По данным Г. Требина вязкость нефти в пластовых условиях различных месторождений изменяется от сотен мПа*с до десятых долей мПа*с (около 25 % залежей), от до 7 мПа*с (около 50 % залежей) и от 5 до 30 мПа*с (около 25 %).
Рис 3 Изменение вязкости пластовой нефти от температуры (а) и давления (б)
Однако известны месторождения нефти, вязкость которых в пластовых условиях достигает значительной величины: Русское месторождение Тюменской области (μ ≈ 700-800 мПа*с), залежи Ухтинского месторождения Коми (μ ≈ 2300 мПа*с), пески Атабаска в Канаде.
В пластовых условиях вязкость нефти может быть в 10 ки раз меньше вязкости сепарированной нефти или нефти в поверхностных условиях.
Для Арланского месторождения — разница более 20.
В пласте на нефть воздействует содержащийся в пласте газ и пластовая температура.
Влияние плотности нефти на вязкость: легкие нефти менее вязкие, чем тяжелые.
Классификация нефти по вязкости:
незначительная вязкость — μ 25 мПа* с;
сверхвязкие (СВН) — μ > 30 мПа*.
Например, вязкость нефтей залежей:
верхнемеловые отложения Северного Кавказа 0,2-0.3 мПа*с; девон в Татарстане, Башкирии, мел Западной Сибири — 1-5 мПа*с;
Ашальчинское месторождение сверхвязкой нефти, Ярегское месторождение в Коми ( шахтный способ добычи) — более 30 мПа*с.
От чего зависит коэффициент вязкости жидкости
Т ехнология измерения вязкости.
Решения Emerson Micro Motion.
Вязкость среды – это одна из физических величин, которая имеет большое практическое применение. В лабораторных исследованиях, промышленности, медицине и других сферах деятельности – понятие внутреннего трения слоев среды фигурирует очень часто. В качестве примера: работа простейшего лабораторного оборудования может зависеть от степени вязкости среды, которая используется для исследований; управление нагревателями с использованием жидкого топлива; контроль процессов смешения и транспортировки разных продуктов в продуктопроводах — все эти процессы и множество других требуют точных и надежных средств контроля вязкости.
Под вязкостью понимают способность жидкости оказывать сопротивление перемещению одной ее части относительно другой под действием внешней силы. Суть этого понятия заключается в появлении силы трения между различными слоями внутри жидкости при их относительном движении.
Вязкость является важнейшей физико-химической характеристикой многих веществ. Значение ее учитывают при проектировании и эксплуатации трубопроводов и аппаратов, в которых происходит движение (например, если они служат для перекачивания) жидкой или газообразной среды. Это могут быть нефть, газ или продукты их переработки, расплавленные шлаки либо стекло и прочее. Вязкость является показателем качества многих продуктов и часто характеризует степень их готовности при переработке сырья, транспортировке и применении, так как она напрямую зависит от структуры вещества и показывает физико-химическое состояния материала и изменения, происходящие в технологическом процессе.
Различают понятия «динамическая вязкость жидкости» и «кинематическая вязкость». Кинематическая вязкость равна отношению динамической вязкости к плотности среды и дает понятие о вязкости среды в определенных условиях — под действием силы тяжести.
Часто для оценки величины сопротивления деформации или истечения используют не динамическую, а кинематическую вязкость, единицы измерения которой в системе СИ выражаются в квадратных метрах за секунду. Кинематическая вязкость (обозначается ν) есть отношение вязкости динамической (µ) к плотности среды (ρ): v = µ / ρ.
Динамическая и кинематическая вязкость.
Fтр — сила трения, возникающая между слоями жидкости (газа) при их относительном сдвиге
µ — коэффициент динамической вязкости
S — площадь соприкосновения слоев
dV/dn — градиент скорости в направлении нормали к движущимся слоям
v — коэффициент кинематической вязкости
ρ — плотность жидкости (газа)
Вискозиметр камертонного типа FVM Micro Motion — новая разработка датчика погружного типа для измерения вязкости. FVM (предыдущее поколение — 7827/29) — это промышленный многопараметрический датчик, разработанный для процессов, требующих непрерывного оперативного измерения динамической вязкости в трубопроводах или емкостях.
Дополнительно к динамической вязкости, чувствительный элемент одновременно измеряет плотность, позволяя точно определить и кинематическую вязкость.
Принцип действия преобразователей вязкости FVM Micro Motion основан на зависимости параметров колебаний резонансного контура сенсора преобразователя (металлического виброэлемента типа вилки) от вязкости измеряемой жидкости.
Зубцы вибрирующей вилки погружаются в рабочую жидкость, и их естественная частота вибрации изменяется вместе с изменением плотности. На частоту вибрации вилки-камертона также оказывает воздействие вязкость жидкости. Колебания виброэлемента поддерживаются с помощью пьезоэлементов, управляемых электроникой прибора. Период времени и частота вибрации преобразуются в точные показания плотности и вязкости с помощью калибровочных коэффициентов измерителя.
Вискозиметр FVM Micro Motion выпускается с инновационным электронным блоком, который характеризуется гибким подходом к организации связи по различным протоколам, и может предварительно конфигурироваться на заводе в соответствии со специальным приложением пользователя, снижая затраты на системную интеграцию и установку.
Встроенные средства самодиагностики позволяют контролировать актуальность показаний прибора в реальном времени. Конструктивная унификация датчика FVM также упрощает замену вискозиметров предыдущего поколения Micro Motion (серии 7827/7829).
Подтвержденная многолетней практикой технология измерения вязкости в сочетании с новым унифицированным блоком электроники следующего поколения позволяет успешно интегрировать преобразователи вязкости в современные системы управления технологическими процессами.
главная > справочник > химическая энциклопедия:
Вязкость
Вязкость, свойство газов и жидкостей оказывать сопротивление необратимому перемещению одной их части относительно другой при сдвиге, растяжении и др. видах деформации. Dязкость характеризуют интенсивностью работы, затрачиваемой на осуществление течения газа или жидкости с определенной скоростью. При ламинарном сдвиговом течении жидкости между двумя плоскопараллельными пластинками, верхняя из которых движется с постоянной скоростью v под действием силы F, а нижняя неподвижна, слои жидкости перемещаются с разными скоростями — от максимальной у верхней пластинки до нуля у нижней (рис. 1). При этом касательное напряжение τ=F/S, а скорость деформации , где S-площадь пластинок, H — расстояние между ними. Если между τ и
имеется линейная зависимость, жидкость называется ньютоновской; отношение
называют динамической вязкостью (или просто вязкостью) η.
Величину, равную отношению вязкости вещества к его плотности, называют кинематической вязкостью, обратную вязкости величину — текучестью. В общем случае пространственного течения для ньютоновских жидкостей имеет место линейная зависимость между тензорами напряжений и скоростей деформации. Жидкости, для которых указанные зависимости не являются линейными, называются неньютоновскими (см. Реология).
В системе СИ значения вязкостb η выражают в Па·с. Для газов η составляет обычно от 1 до 100 мкПа·с, для воды при 20°С 1 мПа·с, для большинства низкомолекулярных жидкостей до 10 Па·с. Расплавленные металлы по порядку величины η близки к обычным жидкостям.
Вязкость низкомолекулярных жидкостей, относящихся к одному гомологическому ряду, примерно линейно растет с увеличением молярной массы вещества; она увеличивается также с введением в молекулу циклов или полярных групп. Вязкость разбавленных суспензий и эмульсий линейно возрастает с увеличением относительного объема дисперсной фазы. Вязкость растворов и расплавов полимеров достигает 0,1 МПа·с, каучуков и резиновых смесей, битумов и асфальтов — 100 МПа·с. В отличие от низкомолекулярных гомологов, вязкость полимеров растет пропорционально их молярной массе не линейно, а в степени 3,5, т.е. гораздо сильнее.
Рис. 1. Распределение скоростей при ламинарном сдвиговом течении ньютоновской жидкости (пояснения в тексте).
Рис. 2. Распределение скоростей при ламинарном течении ньютоновской жидкости в канале (пояснения в тексте).
С повышением температуры вязкость газов увеличивается, поскольку она обусловлена интенсивностью теплового движения. Вязкость гелия при приближении к 0К становится исчезающе малой (т.н. сверхтекучее состояние). Вязкость жидкостей с повышением температуры уменьшается благодаря снижению энергии межмолярных взаимодействий, препятствующих перемещению молекул. В представлениях теории свободного объема (см. Жидкость) установлено количественное соответствие между увеличением свободного объема жидкости и ее вязкостью с ростом температуры.
С увеличением давления вязкость всегда возрастает (см. Давление). При течении жидкости в цилиндрическом канале из-за тормозящего действия вязкого сопротивления устанавливается распределение скоростей по радиусу канала: у стенки канала она равна нулю, а в центре максимальна. При ламинарном течении ньютоновской жидкости профиль скоростей оказывается параболическим (рис. 2), и вязкость выражается через перепад давления , требуемый для создания определенного объемного расхода Q:
, где R — радиус, Z — длина канала (формула Гагена-Пуазейля).
Для многих расплавов и растворов полимеров и коллоидных систем, в отличие от низкомолекулярных жидкостей, вязкость зависит от режима течения (т.е. от или
). Поэтому при характеристике таких сред необходимо указывать условия измерения вязкости (значения
или
). Различают: наибольшую ньютоновскую вязкость (или вязкость неразрушенной структуры), отвечающую предельно низким
; эффективную (или «структурную») вязкость, зависящую от уровня действующих в среде напряжений; наименьшую ньютоновскую вязкость (или вязкость предельно разрушенной структуры), измеряемую при наиболее интенсивном режиме деформирования, когда вязкость перестает зависеть от
.
Значением вязкости характеризуют переход некристаллизующихся (переохлажденных) жидкостей из текучего в стеклообразное состояние при охлаждении. Температуру, при которой вязкость достигает 10 11 — 10 12 Па·с, условно принимают за температуру стеклования. Свойства разбавленных растворов полимеров оценивают так называемой характеристической вязкостью («предельным числом вязкости«), которая определяется как при С→0, где
— вязкость растворителя, а С — концентрация раствора. Величина
связана с размерами и формой макромолекул в растворе и используется для их определения.
Вследствие высокой чувствительности вязкости жидкостей к молярной массе и строению молекул ее измерения служат основой физико-химических методов анализа и контроля технологических процессов (см. Вискозиметрия). Значения вязкости среды обусловливают мощность мешалок, насосов и т.п., оказывая влияние на скорость тепло- и массопереноса. Температурная зависимость вязкости — важнейшая характеристика нефтепродуктов, особенно смазочных материалов.
2) Способность твердых тел необратимо поглощать энергию, затрачиваемую на их деформацию без течения (внутреннее трение). Обычно поглощение энергии при деформировании упругих тел мало, но оно может заметно возрастать в некоторых узких температурных диапазонах, называемых областями релаксационных переходов. При деформировании эластомеров (каучуков и резин) наблюдается заметное поглощение энергии, сопоставимое с энергией упругих колебаний, что приводит к разнообразным гистерезисным явлениям при их деформировании, в частности к значительному саморазогреву при многократных циклических деформациях.
Лит.: Гатчек Э., Вязкость жидкостей, пер. с англ., 2 изд., М.-Л., 1935; Виноградов Г.В., Малкин А.Я., Реология полимеров, М., 1977, с. 120-235. См. также лит. при ст. Растворы полимерв.
Вязкость жидкости | Вязкость воды, молока, бензина, нефти, спирта
Вязкость (кинематическая или динамическая) — свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между ее молекулами. Характеристиками вязкости являются: динамический коэффициент вязкости μ и кинематический коэффициент вязкости ν.
Единицей динамического коэффициента вязкости в системе СГС является пуаз (П): 1 П=1 дина·с/см 2 =1 г/(см·с). Сотая доля пуаза носит название сантипуаз (сП): 1 сП=0,01П. В системе МКГСС единицей динамического коэффициента вязкости является кгс·с/м 2 ; в системе СИ — Па·с. Связь между единицами следующая: 1 П=0,010193 кгс·с/м 2 =0,1 Па·с; 1 кгс·с/м 2 =98,1 П=9,81 Па·с. У нас на сайте приведен конвертер динамического коэффициента вязкости.
Кинематический коэффициент вязкости
Единицей кинематического коэффициента вязкости в системе СГС является стокc (Ст), или 1 см 2 /с, а также сантистокс (сСт): 1 сСт=0,01 Ст. В системах МКГСС и СИ единицей кинематического коэффициента вязкости является м 2 /с: 1 м 2 /с=10 4 Ст.
Вязкость жидкости с повышением температуры уменьшается. Влияние температуры на динамический коэффициент вязкости жидкостей оценивается формулой μ = μ0·e a(t-t0) , где μ = μ0 — значения динамического коэффициента вязкости соответственно при температуре t и t0 градусов; а — показатель степени, зависящий от рода жидкости; для масел, например, значения его изменяются в пределах 0,025—0,035.
Для смазочных масел и жидкостей, применяемых в машинах и гидросистемах, предложена формула, связывающая кинематический коэффициент вязкости и температуру:
где νt — кинематический коэффициент вязкости при температуре t 0 ;
ν50 — кинематический коэффициент вязкости при температуре 50 0 С;
t — температура, при которой требуется определить вязкость, 0 С;
n — показатель степени, изменяющийся в пределах от 1,3 до 3,5 и более в зависимости от значения ν50.
С достаточной точностью n может определяться выражением n=lgν50+2,7. Значения n в зависимости от исходной вязкости ν при 50 0 С приведены далее в таблице
Значения динамического и кинематического коэффициентов вязкости некоторых жидкостей приведены далее в таблице
Жидкость | t, 0 С | μ, П | μ, П·c | ν, Ст |
Бензин | 15 | 0,0065 | 0,00065 | 0,0093 |
Глицерин 50%-ный водный раствор | 20 | 0,0603 | 0,00603 | 0,0598 |
Глицерин 80%-ный водный раствор | 20 | 1,2970 | 0,12970 | 1,0590 |
Глицерин безводный | 20 | 14,990 | 1,4990 | 11,890 |
Керосин | 15 | 0,0217 | 0,00217 | 0,0270 |
Мазут | 18 | 38,700 | 3,8700 | 20,000 |
Молоко цельное | 20 | 0,0183 | 0,00183 | 0,0174 |
Нефть легкая | 18 | 0,178 | 0,0178 | 0,250 |
Нефть тяжелая | 18 | 1,284 | 0,01284 | 1,400 |
Патока | 18 | 888 | 0,888 | 600 |
Ртуть | 18 | 0,0154 | 0,00154 | 0,0011 |
Скипидар | 16 | 0,0160 | 0,00160 | 0,0183 |
Спирт этиловый | 20 | 0,0119 | 0,00119 | 0,0154 |
Эфир | 20 | 0,0246 | 0,00246 | 0,00327 |
Значение коэффициентов кинематической и динамической вязкости пресной воды
Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.