Trm-parking.ru

ТРМ Паркинг
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое сопротивление качению шины

Что такое сопротивление качению шины

Сопротивление качению

Некоторое количество энергии вырабатываемой топливом шина при движении колеса расходует на деформацию из-за смещения пятен контактов. Данная энергия отнимается из приданной шине кинетической энергии, и вследствие этого колесо замедляется. Около 25—30 процентов энергии топлива может затрачиваться на сопротивление качению. Хотя, данный % в большой степени зависит от скорости автомобиля. Он очень невелик на высоких скоростях.

Сопротивление качению связано с большим количеством эксплуатационных и конструктивных особенностей:

1) состояния дорожной поверхности

6) конструкции шины

В основном сопротивление качению связано с такими конструктивными характеристиками шин, таких как толщина и состояние протектора, число слоев и расположение нитей корда. Снижение численности слоев корда, толщины протектора, использование синтетических материалов и стекловолокна с небольшими утратами помогает снижению сопротивления качению. При увеличении размера шины т.е. диаметра при иных одинаковых обстоятельствах сопротивление качению тоже уменьшается.

«Не забывайте проверять давление в шинах». Проверено, что понижение давления в шинах всего на 0,1 атм. приносит повышение расхода топлива на 2-3 %. Определить на глаз шину с давлением 1, 2 атм. от 2,0 атм. способен не каждый человек, однако водитель, хозяин автомобиля с подспущенными шинами, дожжен будет затрачивать на каждой заправке своего автомобиля лишние деньги.

Завышение предельно допустимого давления в шинах чрезвычайно опасно на скользкой и мокрой дороге. Ни в коем случае нельзя применять этот метод зимой, так как расходы на ремонт автомобиля после ДТП, могут во много раз быть больше по сравнению со средствами сэкономленными от бензина.

С 1 ноября в странах Евросоюза введены обязательные этикетки для производителей шин, облегчающие выбор потребителю.

По новым требованиям, новые шины обязаны иметь дополнительную этикетку с указанием таких ключевых характеристик, как сопротивление качению, сцепление на мокрой дороге и уровень внешнего шума.

Чем меньше сопротивление качению при движении шины, тем меньше энергии рассеивается и, соответственно, тем меньше требуется топлива для продолжения движения. Сопротивление качению составляет до 20% расхода топлива легкового автомобиля и до 30% грузового. Поэтому топливная эффективность помогает снизить прямые расходы и выбросы углекислого газа. Разница между шинами классов G и A по маркировке значительна. В расчете на четыре шины для легкового автомобиля экономия за период использования шин может составить до 300 евро на покрышку благодаря сокращению расхода топлива на 7,5%.

Для больших грузовиков с увеличенным числом колес финансовая разница может быть еще больше. Так, при использовании шин класса A по сопротивлению качению вместо шин G грузовая компания может сэкономить более 5 тыс. евро за период эксплуатации шин.

Ожидается, что использование шин с улучшенными показателями сопротивления качению, а маркировка упростит процедуру, позволит сократить выброс углекислого газа в Европе на 20 млн тонн в год и экономить 10 млрд евро ежегодно.

Величину силы сопротивления качению (условно это Ск) можно расчитать по следующей формуле:
Ск = f G,

где Ск — сила сопротивления качению в кг;

G — вес авто в кг;

f — коэффициент сопротивления качению, который учитывает действие сил деформации шин и грунта, а также трение между ними в различных дорожных условиях.

Определение коэффициента трения качения

Очень большое влияние оказывают эксплуатационные характеристики сопротивления качения на величину момента . Поэтому, с увеличением давления в шине и температуры сопротивление качению понижается. Минимальное сопротивление качению возможно при нагрузке, приближенной к минимальной. С увеличением коэффициента износа шин сопротивление качению уменьшается.

Что такое сопротивление качению шины?

Что такое сопротивление качению шины?
Все про сопротивление качению шин, топливная экономичность резины

Сопротивление качению — это совокупность сил, которые воздействуют на шину и препятствуют её свободному движению вперёд. На его преодоление необходима дополнительная энергия, поэтому 5-15% топлива автомобиль расходует лишь на то, чтобы просто катиться вперёд.

Чтобы понять как это работает на практике, представьте: вы разгоняете автомобиль, затем отпускаете педаль газа и просто катитесь вперёд. Спустя какое-то время машина останавливается. На одних шинах это произойдет через 15 метров, на других через 18м, на третьих через 20м. Шины, которые проедут дальше всех, обладают самым низким сопротивлением качению и лучшей топливной экономичностью. Класс экономичности обычно указан на этикетке шины и обозначается латинскими буквами от A до G, где A — лучшая экономичность, G — худшая.

Разберём, что влияет на экономичность шины и производители работают над её улучшением.

Содержание
От чего зависит сопротивление качению шины
Как производители снижают сопротивление качению
У топливоэкономичных шин худшее сцепление с дорогой?
От чего зависит сопротивление качению шины
Есть два основных фактора, которые влияют на сопротивление качению покрышки:

Во время движения боковины и блоки протектора постоянно деформируются и возвращаются в исходное положение. На такие короткие, но регулярные циклы приходится до 90% потери энергии.
Также на шину также воздействует аэродинамическое сопротивление, которое отнимает ещё от 0 до 15% энергии.
Как производители снижают сопротивление качению
Изменение практически каждого элемента шины имеет потенциал к повышению её топливной экономичности. Вот что делают производители:

Облегчают массу шины, без ущерба для её прочности.
Уменьшают высоту протектора, чтобы снизить деформации блоков во время движения. Но при этом важно сохранить устойчивость шины к аквапланированию и её ресурс.
Оптимизируют боковину, расположение и форму блоков протектора таким образом, чтобы они меньше деформировались при езде.
Улучшают состав резиновой смеси за счет специальных добавок и соединений, которые снижают нагрев покрышки и её силу трения.
Оптимизируют рисунок протектора, чтобы ему оказывалось меньшее аэродинамическое сопротивление.
У топливоэкономичных шин худшее сцепление с дорогой?
Есть мнение, что высокая топливная экономичность шины вредит её тормозным качества. Ведь с одной стороны покрышка должна испытывать меньшую силу трения, чтобы легко катиться и потреблять меньше топлива. С другой стороны, сила трения должна быть большой, чтобы у шины было надежное сцепление с асфальтом. Это подтверждают и многие тесты, в которых «зелёные» шины занимают первые места по расходу топлива, но слабо тормозят на асфальте.

Это справедливо лишь в отношении дешевых шин или старых моделей. Ежегодно компании вроде Michelin, Continental, Goodyear и другие премиум-производители вкладывают огромные деньги в разработку новых шин. Современные материалы и технологии моделирования позволяют выпускать максимально сбалансированные покрышки, которые обладают высокой топливной экономичностью и отличными сцепными качествам. Но и являются такие шины самыми дорогими в своём классе.

Сопротивление качению

Сопротивление качению зависит от массы автомобиля и коэффициента трения качения. Масса автомобиля при этом оказывает первостепенное влияние на величину сопротивления качению. Большая масса проявляется неблагоприятно в любом случае, если мы стремимся к экономии энергии, то уменьшение массы автомобиля является одной из первостепенных задач.

Масса проявляется в виде силы, прижимающей автомобиль к земле. Передвижению препятствует сила, которая зависит от коэффициента трения качения между автомобилем и поверхностью дороги. Здесь имеется возможность экономить определенную энергию. Сила сопротивления качению автомобиля Pf рассчитывается по формуле

где Q – нормальная нагрузка; f – коэффициент трения качения.

Коэффициент сопротивления качению

Ниже приведены значения коэффициента f , которые действительны для качения шины колеса по поверхности дороги с различным покрытием и для других движителей:

Значения коэффициента трения качения f для различных движителей

ПокрытиеЗначение f
Колесо с шиной
Асфальтобетон0,01
Бетон, мелкая брусчатка0,015
Гравийное укатанное с дёгтевой пропиткой0,02
Щебёночное0,025
Грунтовое укатанное0,05
Грунтовое размокшее0,1
Пахота0,15-0,35
Гусеничный движитель
Пахота0,07-0,15
Укатанный снег0,15
Рыхлый снег0,3
Стальное колесо на рельсе0,001-0,002
Примечание. Значения первых семи коэффициентов зависят также от давления в шине и ее типа, о чем будет сказано ниже.

В приближенных расчетах можно допускать, что коэффициент сопротивления качению с изменением скорости автомобиля не меняется. Наименьшее сопротивление качению имеет стальное колесо на рельсе, наибольшее – гусеничный движитель на рыхлом снегу. Чем меньше деформация поверхности, тем меньше сопротивление качению.

Сопротивление качению на неровной дороге

При движении по неровной дороге сопротивление качению зависит от жесткости амортизирующего элемента.

Наезд колеса на препятствие

Если на поверхности дороги возникает препятствие высотой h (см. рис. слева) и автомобиль наезжает на него с малой скоростью, то он может остановиться. На рисунке масса автомобиля представлена грузом М , прикрепленным к оси колеса через пружину F . Предположим, что масса М жестко соединена с осью. В этом случае для преодоления препятствия необходима такая вертикальная сила V , которая способна поднять массу М на высоту h . Эта сила может обеспечиваться, например, кинетической энергией автомобиля при движении. Чтобы автомобиль мог продолжать движение, необходимо, чтобы его кинетическая энергия была большей, чем требуется для поднятия автомобиля на высоту h . Необходимая величина вертикальной силы зависит от угла наезда α и рассчитывается по формуле

Время подъема определяется скоростью автомобиля, а форма препятствия определяет процесс изменения скорости и ускорения. На вершине твердого препятствия скорость массы М не будет равна нулю, и колесо отскочит от препятствия. Однако гравитационная сила остановит массу М и вернет ее на землю путем свободного падения. Энергия горизонтальной силы Н будет затрачена на перемещение колеса на высоту препятствия, но при отскоке колеса эта сила уже не действует и, следовательно, не влияет на увеличение сопротивления качению автомобиля [2].

Если масса М опирается на пружину F и колесо снабжено упругой шиной, то исчезает необходимость подъема колеса и массы М на высоту препятствия h . При благоприятном отношении неподрессоренной массы колеса и подвески к подрессоренной массе М колесо не отскочит от препятствия, и часть энергии, аккумулированная в сжатой пружине и шине, после преодоления препятствия вернется и передвинет автомобиль вперед. Однако значительная часть энергии за счет внутреннего трения в амортизирующих элементах потеряется, превратившись в теплоту. Достаточно мягкая подвеска колес может уменьшить потери энергии при переезде через неровность.

Сопротивление качению на деформируемом покрытии

На дороге с хорошим покрытием действует правило: жесткое колесо на твердом, малодеформируемом покрытии обеспечивает наименьшие потери, обусловленные сопротивлением качению. Если неровности имеют большой размер, то увеличение жесткости колеса и амортизирующих элементов вызывает рост сопротивления качению. В этом случае выгодным является использование мягкой шины больших размеров и нежестких амортизаторов. Шина больших размеров с мягкой боковой поверхностью и низким давлением сама амортизирует мелкие неровности, так что и неподрессоренная масса будет испытывать колебания весьма малой амплитуды, которые хорошо гасятся мягкой подвеской. Небольшое давление в шине увеличивает площадь ее контакта с поверхностью дороги, что уменьшает глубину погружения колеса в мягкое покрытие и соответственно образует колею меньшей глубины.

Коэффициент трения качения жёсткого колеса на деформируемом покрытии имеет иной характер, чем на твердой поверхности, и определяется по формуле

где h – глубина погружения колеса в покрытие, мм; D – диаметр колеса, мм.

В этом случае давление воздуха в шине может влиять противоположно тому, как это имеет место на твердом покрытии, поскольку из-за малого погружения колеса в покрытие при низком давлении в шине коэффициент сопротивления качению будет меньше, чем при высоком. После того как автомобиль с такими шинами выйдет с бездорожья на шоссе, в них необходимо увеличить давление, иначе боковые поверхности шин при большом прогибе будут сильно разогреваться. На некоторых автомобилях используется специальное оборудование, позволяющее изменять давление в шинах, не прекращая движения.

Читайте также

Многие задаются вопросом: что лучше – вариатор или автомат? Статья отвечает на этот вопрос, рассматривая устройство как вариатора, так и автомата, что позволяет взвесить их преимущества и недостатки.

В этой статье Вы найдёте полезные советы, как экономить автомобильное топливо своими руками.

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 16 — 18 (книга есть в библиотеке сайта). – Прим. icarbio.ru
  2. ↺ При последующем контакте колеса с дорогой энергия сопротивления качению проявится в виде части энергии, поглощенной шиной при ударе колеса о поверхность дороги. – Прим. ред. А.Р. Бенедиктова

Комментарии

Спасибо!Ваша информация очень помогла.

коэф трения качения — в какой размерности? мм, см .

Что такое сопротивление качению шины

К аждый владелец машины вам уверенно заявит, что от качества автомобильных шин очень сильно зависит не только управляемость авто, но и расход топлива, сцепление с асфальтом и динамика движения. Кроме того, мы уверены, что вы точно слышали о таком термине, как «сопротивление качению шин» и наверняка задавались вопросом о том, что он означает и как он влияет на общие свойства покрышек. В нашей статье мы рассмотрим, что такое сопротивление качению шины, и как шины с низким сопротивлением качению могут повысить топливную эффективность вашего автомобиля. Итак, приступим!

  • Что такое сопротивление качению шины?
  • Как конструкция покрышки влияет на сопротивление качению
  • Минимальное сопротивление качению шины
  • Сопротивление качению шин и экономия топлива
  • Резюме

Что такое сопротивление качению шины?

Давайте разберемся, что такое сопротивление качению шин. Когда вы нажимаете на педаль газа в вашем автомобиле, вы начинаете ускоряться. Но если посмотреть более детально на сам процесс ускорения автомобиля, то можно увидеть, что нажимая на педаль газа вы передаете энергию от сгорания топлива в моторе, или электрическую энергию (все зависит от того, какой тип двигателя вы используете) через другие системы прямиком на шины вашего автомобиля. Это приводит к тому, что ваши покрышки начинают оборачиваться и набирать достаточный импульс, чтобы ваш автомобиль начал двигаться. Но для того, чтобы колесо начало двигаться, ваши покрышки должны преодолеть очень много факторов, которые препятствуют началу движения. И одним из этих факторов является сопротивление качению шины.

Если говорить техническим языком, то сопротивление качению шины – это минимальная энергия, которую ваше транспортное средство должно передать на колеса, чтобы поддерживать постоянную скорость на ровном дорожном полотне. Другими словами, это усилие, которое нужно для того, чтобы колесо постоянно двигалось.

Главным источником сопротивлению качения является процесс, который называется гистерезис. С технической точки зрения, гистерезис – это, по сути, потеря энергии, которая возникает при прохождении шины по поверхности дорожного полотна. Из-за того, что двигатель автомобиля должен постоянно компенсировать гистерезис, он должен вырабатывать дополнительную энергию, что приводит к увеличению расхода топлива.

Как конструкция покрышки влияет на сопротивление качения

Что такое сопротивление качению мы уже разобрались. Но от чего непосредственно зависит сопротивлении качению? Как бы это странно не звучало, но качение покрышки напрямую зависит от конструкции шины и ее свойств. Давайте детально рассмотрим все ключевые аспекты.

Сама конструкция и материалы, из которых она установлена, напрямую влияет на качение шины. Кроме того, иногда индекс сопротивления качению двух визуально одинаковых покрышек может отличаться практически в два раза. Помимо конструкции, на свойства качения покрышки сильно влияет индекс скорости. Высокий индекс скорости означает, что покрышка обладает высокой курсовой устойчивостью, а сама покрышка специально усилена, чтобы выдерживать большие нагрузки. Хоть такие покрышки и обеспечивают большую безопасность на высоких скоростях, но из-за этого приходится жертвовать увеличенной мощность сопротивления. Немаловажным параметром также является размерность колеса. Здесь все просто: чем больше диаметр колеса, тем меньшим будет сопротивление качению. Известно, что плюс один сантиметр к диаметру колеса – это минус 1% от общего числа сопротивления качению.

Если хотите, чтобы мощность вашего двигателя израсходовалась на то, чтобы придавать вашему авто нужное ускорение, тогда вам нужно выбрать правильный протектор колеса. Запомните, что чем глубже протектор на покрышке, тем больше величина сопротивления. Поэтому, когда покрышки уже изрядно износятся, сопротивления качению может упасть на целых 30% от первоначальной величины.

Также всегда обращайте внимание на давление воздуха в покрышках. Помните, что приспущенное колесо неправильно прилипает к дороге и неравномерно распределяет давление. В результате в автомобиле сильно ухудшается сцепление с дорожным полотном и падает управляемость. Кроме того, при езде на плохо накаченных шинах приводит к тому, что сами шины быстро нагреваются, деформируются. При этом, увеличивается сопротивление качению, увеличивается расход топлива и сами покрышки быстрее изнашиваются.

Минимальное сопротивление качению шины

Скажем сразу, что избавиться сопротивления качению шины нельзя исходя из законов физики. Но раз его нельзя полностью устранить, его можно попробовать свести к минимуму. Как мы уже выяснили, сопротивление качения шин вызвано гистерезисом. Чтобы минимизировать его влияние можно спроектировать покрышку таким образом, чтобы ее протектор был как можно меньше. Минусом такого подхода будет очень малый срок службы покрышки.

Второй способ более технологичен, ведь он требует разработки качественно новых материалов для шин. Покрышки из таких материалов получат снижение сопротивления качению благодаря тому, что они будут устойчивыми к выработке тепла и их протектор будет иметь минимальный прогиб во время сцепления с дорожным покрытием. Современные шины с низким сопротивлением качению используют именно второй подход.

Сопротивление качению шин и экономия топлива

Итак, если просуммировать все вышесказанное, можно сказать, что если мы выберем шины, у которых коэффициент сопротивления качению довольно низкий, то мы сможем больше мощности двигателя перенаправить на увеличение скорости или поубавить газ для экономии топлива. В целом, такое предположение вполне обосновано.

Чтобы проверить эту теорию на практике ученые из автомобильной индустрии провели ряд независимых тестов. В них использовались покрышки, у которых снижения сопротивление качению достигло 10-12 % по сравнению с обычными шинами. При этом, использовались шины от разных производителей. Само тестирование проводилось на гоночном треке на специальном спортивном седане. Во время теста автомобиль проехал около 400 км с несколькими заправками.

В результате тестирования ученые выяснили, что использование шин с низким сопротивлением качения позволило снизить расход топлива на 6 процентов по сравнению с обычными покрышками. В целом, это не очень большое преимущество. Но если брать в пересчете на годовой запас топлива, то может получить довольно неплохая экономия семейного бюджета.

Кроме того, в отчете исследования сказано, что на размер экономии топлива будет влиять не только коэффициент сопротивления качения покрышек, но и стиль вождения, качество дорожного покрытия и общее техническое состояние автомобиля. Поэтому, сам факт того, что вы обули ваше авто в покрышки с низким сопротивлением качения, еще не гарантирует вам того, что вы сможете получить достаточную экономию топлива

Что такое сопротивление качению шины

4.1. Сопротивление качению автомобиля

Одним из главных требований, предъявляемым к шинам легковых автомобилей и связанным с топливной экономичностью, является наименьшее значение коэффициента сопротивления качению. Кроме того, шины должны обладать хорошей устойчивостью и управляемостью, не допускать заноса автомобиля при отклонениях колеса от направления движения.

Потеря контакта с поверхностью дороги наступает при наличии на ней значительного слоя воды. В этом случае возникает эффект жидкостного трения, подобного трению в подшипнике, и шина скользит по воде. При помощи соответствующего рисунка протектора можно обеспечить отвод воды в сторону, чтобы в контакте шины с поверхностью дороги не образовывался слой воды, на котором шина теряет управляемость и возникает опасный эффект «аквапланирования».

Шины с изношенным протектором намного опаснее с точки зрения вышеизложенного эффекта, чем новые. Зависимость коэффициента сцепления от скорости автомобиля и толщины слоя воды для новых и изношенных шин показана на рис. 8. При падении коэффициента сцепления ниже 0,05 автомобиль становится неуправляемым.


Рис. 8. Зависимость коэффициента сцепления φсц от скорости автомобиля v и толщины слоя воды на поверхности дорожного покрытия: а — новая шина; б — изношенная шина без протектора

С точки зрения плавности хода автомобиля и устранения шума в кабине, шина должна поглощать небольшие неровности дороги и не передавать вызываемые ими вибрации на кузов. Это требует прежде всего увеличения податливости боковины шины, но лишь до такой степени, чтобы не допустить потери управляемости автомобиля. Жесткость боковины влияет на боковой увод колеса, возникающий при наличии осевой силы, действующей в плоскости, перпендикулярной оси вращения колеса.

Жесткость боковин шины определяет ее конструкция, и прежде всего способ наложения корда. На рис. 9 изображены различные типы шин: а диагональная с укладкой слоев корда под углом; б радиальная с укладкой слоев корда по радиусу шины с армирующими слоями под протектором; в диагональная улучшенного типа с армирующими слоями под протектором.


Рис. 9. Способы укладки слоев корда шин

Прогресс в области шин направлен на создание все более низкопрофильных шин, имеющих меньшие потери на качение и лучшие показатели устойчивости и управляемости. Профиль шины оценивается процентным отношением его высоты к ширине. На рис. 10 показаны сечения шин серий «80»-«40». Наиболее широко применяется серия «70», а серия «40», например, предназначена уже только для гоночных автомобилей.


Рис. 10. Сечения шин серий ’80’-’40’

Поскольку передаточное отношение трансмиссий автомобиля рассчитывают с учетом диаметра колеса, то и при использовании низкопрофильной шины этот диаметр должен быть сохранен неизменным. Для этого шина должна монтироваться на обод большего диаметра. Это имеет свои положительные стороны: например, можно увеличить ширину и диаметр тормозов, что улучшит их охлаждение. Однако масса колеса увеличится, если не применить для его изготовления легкие сплавы.

В предыдущих главах для простоты изложения использовалось допущение, что коэффициент сопротивления качению не зависит от скорости движения. В действительности это не так, поскольку конструкция, технология изготовления или материал шин оказывают влияние на изменение этого коэффициента, особенно при больших скоростях движения. На рис. 11 приведены реальные значения коэффициента сопротивления качению, измеренные у шин итальянской фирмы «Пирелли» серий «80»-«50».


Рис. 11. Зависимость сопротивления качению шин f от скорости автомобиля υ

При высоких скоростях отчетливо проявляется преимущество низкопрофильных шин серий «60» и «50». Например, шина HR/60 на скорости 160 км/ч имеет сопротивление качению на 26 % меньше, чем шина SR/80.

Среднее удельное давление в площади контакта у шины с упругой боковиной приблизительно равно давлению воздуха в шине. Поэтому как широкая, так и узкая шины одинаково нагруженного колеса будут иметь равный размер площади контакта с поверхностью дороги. Однако формы поверхности контакта будут различными. На рис. 12 показаны два колеса с шинами различной ширины и их отпечатки. Площадь обоих отпечатков одинакова, но у более широкой шины он растянут по ширине, у менее широкой — по длине. Как изображено на боковой проекции колеса, деформация широкой шины h0 меньше, чем узкой hu. Это является причиной меньшего погружения колеса в мягкое покрытие и, следовательно, меньшего коэффициента сопротивления качению. Данное правило действует и на твердом покрытии, так как изменяется угол наезда α, образуемый между касательной к окружности колеса и поверхностью дороги в месте контакта ее с колесом. Коэффициент сопротивления качению измеряется при качении колеса по ровному покрытию, имеющему большую жесткость, что моделирует качение эластичного колеса по жесткому покрытию и приблизительно соответствует условиям качения шины по дороге с асфальтовым или бетонным покрытием. В этом случае можно пренебречь влиянием деформации дорожного покрытия, и деформация колеса будет протекать таким образом, как показано на рис. 13. При статическом нагружении деформация симметрична, а равнодействующая сил проходит через центр тяжести отпечатка.


Рис. 12. Поверхности контакта узкой и широкой шин с дорожным покрытием


Рис. 13. Распределение давления р на поверхности контакта шины с дорожным покрытием

Колесо представляет собой пневматическую пружину с высокопрогрессивной характеристикой. Характеристику этой пружины можно получить путем нагружения колеса и измерения положения его центра тяжести в зависимости от величины нагрузки. При вращении шины каждую элементарную площадку на ее окружности можно считать самостоятельной, предварительно сжатой пружиной. Дополнительное сжатие этих парциальных пружин при контакте с дорогой требует затраты работы, которая увеличивает сопротивление качению шины. При выходе из контакта этих пружин после достижения максимального сжатия в среднем положении энергия, аккумулированная в них, высвобождается, и сила действует в направлении движения, уменьшая сопротивление качению. Для идеальной шины вложенная энергия была бы равна энергии высвобожденной, и колесо катилось бы без потерь.

Однако шина снабжена реальным протектором и, кроме того, в ней имеется внутреннее трение. При деформации протектора, помимо силы, необходимой для сжатия пневматической пружины, требуется сила для придания ускорения парциальной массе. Наличие внутреннего трения вызывает расход еще части энергии на разогрев шины. Следовательно, в первой половине цикла соприкосновения шины с дорогой должно быть развито усилие, достаточное для сжатия пружины, придания ускорения массе протектора и преодоления внутреннего трения. Однако во второй половине цикла вся сила сжатия пружины не высвободится, так как часть ее уйдет на придание обратного ускорения массе и на преодоление внутреннего трения. При вращении колеса на массу протектора воздействует также центробежная сила. Распределение удельных давлений по площади отпечатка будет поэтому неравномерным.

Равнодействующая всех сил расположена в первой половине отпечатка и удалена от оси колеса на расстояние s. За счет этого возникает момент сопротивления sG, который вызывает горизонтальное сопротивление H = G tg φ, где tg φ = s/R = f; G — нагрузка на шину.

В действительности, при передаче окружного усилия с шины на дорогу зависимости гораздо сложнее, но для наглядности объяснения приведенная выше упрощенная модель вполне пригодна. Так как центробежная сила и время сжатия зависят от окружной скорости у, то и сопротивление качению также частично зависит от нее. Эта зависимость выражается уравнением

Значение f0 и в особенности показатель степени n, по мнению различных авторов, имеют весьма широкий диапазон. По Э. Эверлингу n = 1; В. Камм считает n = 2, Андро n = 3,7.

Для наших рассуждений о путях снижения сопротивления качению вполне пригодны реально измеренные значения коэффициента сопротивления f (см. рис. 11) и влияние на него давления в шине (рис. 14). Из графиков на рис. 14 видно, что малое давление значительно увеличивает сопротивление качению, особенно при больших скоростях движения.


Рис. 14. Зависимость коэффициента сопротивления качению f от скорости автомобиля v и давления в шинах р

Как показано на рис. 11, до скорости 60-80 км/ч сопротивление качению несколько падает, но при больших скоростях резко увеличивается. Сверхнизкопрофильная шина серии VR/50 сохраняет небольшую величину сопротивления качению вплоть до скорости 200 км/ч. Таким же свойством обладает и шина HR/60.

Весьма опасным для шин является резонанс протектора, возникающий на высоких скоростях. При достижении определенных оборотов колеса могут начаться колебания элементов слоя протектора на пневматической пружине под влиянием постоянных импульсов сжатия при каждом повороте колеса. На поверхности шины в момент выхода ее из контакта с дорогой появляются статические волны, которые могут распространиться по всей окружности колеса. Резонанс протектора является причиной больших выделений теплоты и поэтому недопустим. При его возникновении в течение нескольких десятков секунд слой протектора может отделиться и, таким образом, возникнет аварийная ситуация.

Резонанс протектора резко повышает сопротивление качению, а рост энергии, потребляемой для преодоления сопротивления, сильно разогревает шину. Границы резонанса можно сдвинуть в сторону больших частот вращения колеса повышением внутреннего давления в шине и уменьшением массы протектора. Максимально допустимая скорость для отдельных типов шин фирмы «Пирелли» ограничивается следующим образом: SR — 180 км/ч; HR — 210 км/ч; VR — более 210 км/ч.

Снижение сопротивления качению у низкопрофильных шин весьма значительно и поэтому способствует повышению топливной экономичности. Фирма «Пирелли» гарантирует, что использование нового типа шин Р8 вызывает уменьшение расхода топлива до 4 %, что соответствует снижению сопротивления качению на 20 %. Одновременно повышается срок службы шин. Шина Р8 относится к серии «65» и пригодна для использования на скоростях до 180 км/ч.

Низкопрофильные шины обладают большей жесткостью боковин, что проявляется в меньшей величине бокового увода. На рис. 15 показано влияние угла бокового увода на коэффициент сопротивления качению. Пунктирная кривая характеризует шины серии «80», сплошная — серии «60».


Рис. 15. Зависимость коэффициента сопротивления качению f узкой и широкой шин от угла бокового увода β

Одним из главных требований, предъявляемых к шинам, является обеспечение хорошего сцепления с поверхностью дороги. Оно обусловливается шириной профиля шины, рисунком протектора и качеством его материала. Для обеспечения максимального сцепления с поверхностью дороги у гоночных автомобилей применяются шины, изготовленные из особо мягкого материала с гладким протектором без рисунка. Мелкие углубления на поверхности протектора делаются лишь для контроля износа, который у этих шин при малых пробегах достигает значительных размеров. Сопротивление качению у таких гладких шин меньше, чем у тех, которые снабжены протектором с рисунком.

Как видно из вышеизложенного, правильный выбор типа шины и соблюдение установленного внутреннего давления воздуха в них являются важными факторами, влияющими на уменьшение расхода топлива. Поскольку, однако, доля сопротивления качению в сумме общего сопротивления движению автомобиля значительно уменьшается с ростом скорости, то уменьшение этого вида сопротивления движению не означает пропорционального снижения расхода топлива. Так, уменьшение сопротивления качению шин на 10 % вызывает снижение потребления топлива лишь на 2%. Низкопрофильные шины обеспечивают лучшие условия движения, что может приводить к увеличению скорости, при котором экономия топлива, достигнутая снижением сопротивления качению, практически сведется к нулю. В этом случае необходимо принимать в расчет, какое снижение расхода достигается уменьшением сопротивления качению шин и насколько увеличивается этот расход из-за роста скорости движения.

При действии боковой силы коэффициент сопротивления качению шины растет. Боковая сила возникает чаще всего при движении на поворотах. Чтобы не допустить при этом снижения скорости автомобиля, необходимо увеличить мощность двигателя. Боковая сила растет с ростом скорости и соответственно увеличивается сопротивление качению. Поэтому при прохождении поворотов на большой скорости потребление топлива увеличивается.

Поворот можно проезжать и способом плавного скольжения всех колес (так называемый управляемый занос автомобиля), что весьма эффективно, но при этом требуется значительная мощность двигателя. Все колеса автомобиля в таком случае отклонены от направления движения. Умение экономично проезжать поворот на большой скорости заключается в прохождении его с наименьшим буксованием колес.

Что такое сопротивление качению шины

При движении колеса часть энергии шина тратит на деформацию вследствие перемещения пятна контакта. Эта энергия вычитается из сообщенной телу кинетической энергии, и поэтому колесо тормозит. На сопротивление качению уходит до 25%-30 % энергии топлива. Впрочем, этот процент сильно зависит от скорости автомобиля. На больших скоростях он ничтожно мал.
Сопротивление качению зависит от многих конструктивных и эксплуатационных факторов:

1) Конструкции шины;
2) Давления воздуха в шине;
3) Температуры;
4) Нагрузки;
5) Скорости движения автомобиля;
6) Состояния дорожной поверхности.

В наибольшей степени сопротивление качению зависит от таких конструктивных параметров шин, как количество слоев и расположение нитей корда, толщина и состояние протектора. Уменьшение количества слоев корда, толщины протектора, применение синтетических материалов (и стекловолокна) с малыми гистерезисными потерями способствуют снижению сопротивления качению. С увеличением размера шины (диаметра) при прочих равных условиях сопротивление качению также снижается.
Велико влияние эксплуатационных факторов на величину момента сопротивления качению. Так, с повышением давления воздуха в шине и ее температуры сопротивление качению уменьшается. Наименьшее сопротивление качению имеет место при нагрузке, близкой к номинальной. С увеличением степени изношенности шины оно уменьшается.

На дорогах с твердым покрытием сопротивление качению во многом зависит от размеров и характера неровностей дороги, обусловливающих повышенное деформирование шин и подвески и, следовательно, дополнительные затраты энергии. При движении по мягким или грязным опорным поверхностям затрачивается дополнительная работа на деформирование грунта или выдавливание грязи и влаги, находящихся в зоне контакта колеса с дорогой.
Исследования показывают, что при движении автомобиля со скоростью до 50 км/ч сопротивление качению можно считать постоянным. Интенсивное увеличение сопротивления качению наблюдается при скорости свыше 100 км/ч. Объясняется это увеличением затрат энергии при ударах и колебательных процессах, происходящих в шине при высоких скоростях движения.

Сопротивление качению — одна из пяти сил, которые должен преодолеть автомобиль, чтобы двигаться.
К прочим силам относятся аэродинамическая, которая зависит от скорости автомобиля, сила инерции при ускорении, играющая важную роль в городских условиях движения, сила тяжести при подъеме и силы внутреннего трения автомобиля.
При этом автомобилю также необходима энергия для работы его вспомогательных механизмов и устройств (кондиционера, мультимедийных устройств, усилителя рулевого управления и т. д.).
В легковом автомобиле на долю шины приходится 20% потребляемой энергии, то есть один полный топливный бак из пяти. Для большегрузного автомобиля эта доля может составлять более 30% от общего количества потребляемой энергии.
Сложность технологии «низкого сопротивления качению» заключается в том, что необходимо сохранить на том же уровне основополагающие характеристики шины, а именно те, которые связаны с безопасностью и ходимостью.

С каждым оборотом колеса шина деформируется под воздействием дорожного полотна. Все усилия, позволяющие делать ускорения, тормозить или проходить повороты прилагаются в пятне контакта.
Деформируясь, материалы, из которых изготовлена шина, нагреваются и рассеивают часть энергии, передаваемой двигателем. Это явление и называется сопротивлением качению.
Коэффициент сопротивления качению выражается в кг/т. Коэффициент в 12 кг/т означает, что, если на шину давит груз в одну тонну, к ней нужно постоянно прилагать силу в 120 Н, чтобы не дать ей возможность потерять скорость под воздействием сопротивления качению.

Сама шина:

Конструкция:
— Конструкция и материалы влияют на сопротивление качению в равной степени. Иногда разница этого показателя у шин для одного и того же автомобиля может доходить до 50%.
Индекс скорости шины:
— Выполнение требований, предъявляемых к конструкции и усилению ее элементов для обеспечения курсовой устойчивости на высоких скоростях, как правило, также приводит к повышению сопротивления качению.
Размерность шины:
— Чем больше внешний диаметр шины, тем ниже сопротивление качению. При каждом дополнительном сантиметре сопротивление качению уменьшается на 1%.
Рисунок протектора:
— Увеличение глубины рисунка протектора на 50% приводит к увеличению сопротивления качению на 12%.
В конце жизненного цикла шины ее сопротивление качению снижается на 25% по сравнению с новой шиной.
Давление воздуха:
— Недостаточно накачанная шина создает неравномерное распределение давления на поверхность дороги и приводит к изменению формы пятна контакта. В связи с этим ухудшаются сцепные свойства, и происходит преждевременный износ шины. Недостаточное давление в шине приводит также к увеличению амплитуды деформаций, повышенному нагреву и, таким образом, потере энергии, которая проявляется в повышении сопротивления качению и увеличении расхода топлива.
Если бы все европейские автомобилисты ездили с правильным давлением воздуха в шинах, это дало бы выигрыш до 2,5% в расходе топлива и снижении выбросов СО2.
Характеристики дорожного покрытия:
Температура окружающей среды: При увеличении температуры на каждые 10°С (в диапазоне от 10 до 40°С) сопротивление качению уменьшается на 6%.
Тип дорожного покрытия: Чем более шероховатым является дорожное полотно, тем выше сопротивление качению. Разница может достигать 40%.

Сколько топлива «потребляют» шины? Тест на сопротивление качению

Смотрите-ка: на носу Новый год, а на улице все еще плюсовая температура. Примерно в таких условиях мы тестировали пять комплектов зимних шин и один комплект летних. Самое долгое, нудное и времязатратное, но очень важное испытание касалось экономичности покрышек. Установленный факт: от 5 до 15% топлива тратится на то, чтобы автомобиль просто катился вперед. Роль шин в этом процессе немаловажная, и потому производители придают большое значение т. н. сопротивлению качения. Его-то и будем измерять.

Что такое сопротивление качению?

Сначала давайте разберемся в терминах. Шинники часто обращаются к понятию «сопротивление качению». Оно у разных покрышек разное: одна модель катится свободно, без усилий, другая — натужно, как бы противится (отсюда — сопротивление).

Чтобы ранжировать шины по экономичности, придумали классы — от A до G. Если покрышка классифицирована как А — это высший результат. Следовательно, у нее низкое сопротивление качению. Маркировка «В» свидетельствует о чуть большей «прожорливости», «С» — еще большей и так далее. В конце списка — класс G, у которого высокое сопротивление качению.

Считается, что на сопротивление качению шины влияют несколько факторов. Многое зависит от самой покрышки: веса, состава резины, высоты и рисунка протектора, формы боковины и т. д.

По данным производителей, от 5 до 15% топлива тратится на то, чтобы автомобиль просто катился вперед.

Условия испытания: разгоняемся до 80 км/ч и ждем-ждем-ждем.

При измерении выбега автомобиль разгоняют до определенной скорости, переводят рычаг КПП в положение «N» и ждут, никак не воздействуя на педали, пока машина полностью не остановится.

Именно такого алгоритма придерживался Юрий Краснов, выступавший водителем-испытателем в шинных тестах Onliner. Подчеркнем, что заезды проводились на одном и том же участке Республиканского полигона для испытания мобильных машин (более известен как «Липки»).

Температура воздуха в дни проведения тестов составляла от +5 до +6 градусов по Цельсию. Ветер был слабым — всего 1—3 метра в секунду.

В салоне всегда находились два человека (Юрий Краснов за рулем и штурман). Давление в шинах, которые перед испытаниями проходили небольшую обкатку (до 100 км), составляло 2,2 бара.

В качестве инструмента для измерения выступал высокоточный прибор Racelogic VBOX Sport. Он позволяет определять динамические характеристики автомобиля, а также тормозной (корректнее в данном случае сказать остановочный) путь. Устройство фиксирует показатели в рамках заданных параметров. В данном случае был установлен диапазон с 80 до 0 км/ч.

Нам предстояло узнать расстояние, за которое остановится машина. Чем оно больше, тем меньше сопротивление качению, а значит, лучше результат.

Дальнейшее — дело техники. Нужно определиться с выборкой репрезентативных результатов и вывести среднее арифметическое, которое будем считать итоговым показателем.

Напомним, в нашем распоряжении по-прежнему пять комплектов «зимы» и один — «лета».

Viatti Bosco S/T V-526

Наступает черед российских покрышек Viatti Bosco S/T V-526. Продавец говорил о них как о крепком середнячке. Так и получается, судя по результатам нашего шинного теста.

Про экономичность этой модели информации мало. Покрышки продавались без стикера. На сайте дистрибьютора продукции заявляется об их энергоэффективности. Что ж, поверим, но проверим!

Надо сказать, что в этот раз российским шинам удается удивить! Не считая двух результатов, явно выбивающихся из общего числа, получаются весьма серьезные показатели. Среднее арифметическое — 1308,3 м. Хорошая заявка.

Данные Nokian Tyres о сопротивлении качению

Компания Nokian Tyres всегда активно популяризировала экологичные шины, недавно финские специалисты опубликовали резюме о сопротивлении качению, экономии топлива во время движения за счет легкости качения шины и сокращении вредных веществ при выбросе выхлопного газа. Рассмотрим их данные более подробно.

Что такое «низкое сопротивление качению»? При качении шина, как любой физический объект, подвергается воздействию сил, которые препятствуют ее свободному движению, замедляют ее. На преодоление воздействия этих сил шине требуется дополнительная энергия: исследования показывают, что 5-15% топлива автомобиль тратит просто на то, чтобы ехать вперед. Поэтому шинные разработчики много лет пытаются спроектировать свой продукт так, чтобы максимально снизить воздействие на него сторонних сил. Чтобы шина катилась легко и расходовала как можно меньше топлива.

По статистике, предоставленной шинниками Nokian Tyres, по сравнению с 2013-ым годом сопротивление качению у шин Nokian снизилось на 8%. Это эквивалентно объему выхлопных газов 65000 автомобилей. Увеличение экономии топлива за счет низкого сопротивления качению – это не только экономически выгодное решение, оно благотворно влияет на экологическую ситуацию и углеродный след за счет снижения выхлопов CO2. Это касается также электромобилей: шины с низким сопротивлением качению увеличивают дальность их пробега.

На примере зимней модели Nokian Hakkapeliitta R3 (SUV) можно привести следующие данные: если установить их на все легковые авто Финляндии, Швеции и Норвегии экономия топлива могла бы достигнуть 300 миллионов литров, а сокращение углекислого газа при выхлопе – 710 тысяч тонн. Этот расчет был сделан на основании сравнения сопротивления качению шин Nokian с аналогичными зимними шинами премиум-марок. Расчет верен при следующих условиях: число автомобилей Финляндии — 2,6 млн., их средний годовой пробег – 14,4 тыс.км. , среднее потребление топлива — 6,7 литра на 100 км. В Финляндии 45% пробега приходятся на зимние шины. Издержки по выбросам CO2 определялись с учетом цены 40 евро за одну тонну выбросов углекислого газа, что соответствует данным Финского транспортного агентства, Государственного автодорожного управления Норвегии и Агентства по охране окружающей среды США*.

По оценкам Евросоюза на движение транспорта приходится около 24% выбросов парниковых газов, в связи с чем была установлена цель – к 2020 году снизать этот показатель на 20% по сравнению с уровнем на 1990 год. С 2021 года в силу войдет ужесточение целевых показателей, установленных ЕС.

Nokian Tyres вместе с другими премиальными шинными производителями постоянно работают над оптимизацией своих новых моделей: вводят новые резиновые смеси, продумывают конструкцию и протекторный рисунок, чтобы максимально снизить сопротивление качению.

Преимущества шин Nokian Tyres в топливной экономичности

В ассортименте Nokian Tyres – около 90% моделей обладают очень низким сопротивлением качению, об этом свидетельствует маркировка – А, В и С. При этом самая распространенная маркировка у аналогов, согласно анализу Европейской ассоциации производителей шин и резиновых изделий за октябрь 2018 года, — Е. Премиальные шины с оптимальным давлением экономят до 0,5л/100км по сравнению с аналогичными шинами, имеющими высокий показатель сопротивления качению.

Не стоит забывать, что компания Nokian Tyres была удостоена титула Silver Class в Robeco SAM Sustainability Yearbook 2019.

*Источник: Оценка с применением методики истинной оценки KPMG.

Сопротивление качению шины — что это и от чего зависит

Мало кто из автомобилистов уделял должное внимание такой характеристике покрышек, как сопротивление качению шины. А зря. Автомобильная резина настолько сложный технический элемент, что от неё зависит не только проходимость и безопасность при вождении, но и экономия топлива. В этом случае, выигрывают и автовладельцы, и природозащитники, так как сокращение выхлопных газов приводит к меньшей степени антропогенного загрязнения окружающей среды.

Что такое сопротивление качению шины

Чтобы коротко и доходчиво объяснить, что такое сопротивление качению колеса, необходимо представить покрышку в пятне контакта с автодорогой. В этом месте, резина расширяется под нагрузкой машины. В совокупности с инерцией движения автомобиля, резина нагревается и растрачивает часть энергии, передаваемой от мотора, это явление и получило название — сопротивление качению шины. Оно измеряется по формуле Pf = Q х f, где «Q» – обычная нагрузка авто, а «f» коэффициент трения качения.

Для каждого дорожного покрытия, коэффициент «f» имеет своё значение, например, для асфальтобетона 0,01, а для щебёночного покрытия 0,025. Всего используется 6 значений «f» для расчёта формулы колёсной технике. Все значения и наименование покрытий, можно найти в соответствующей таблице.

Каким нагрузкам подвержена шина

В движение, автошина подвержена многочисленным нагрузкам и деформациям. Все они влияют на степень сопротивления качения шины. К таким нагрузкам относятся:

  • аэродинамика кузова машины;
  • инерция автомобиля;
  • вес транспортного средства;
  • состояние амортизаторов и повестки;
  • тип привода авто.

Если автомобиль наезжает на неровность при малой скорости, то он способен остановиться. Чтобы создать кинетическую энергию для преодоления препятствия, необходимо обеспечить машине более высокую скорость, а это дополнительная энергия от ДВС.

От чего зависит сопротивление качению

Степень явления сопротивления качения шины, зависит от множества факторов. Среди самых известных можно выделить такие, как:

  • Конструкция колеса. Именно состав каучука и дополнительных материалов, влияет на степень сопротивления качения резины. Например, один и тот же автомобиль с покрышками разной конструкции и мягкости, может обеспечить расхождение до ½ в показателях;
  • Коэффициент скорости покрышки. Чтобы обеспечить колесу заявленные характеристики на определённых скоростях, конструкция шин может иметь различные усиления. Все они оказывают влияние на твёрдость изделия, что понижает сопротивление качения;
  • Габарит колеса. Большое колесо имеет меньшее сопротивление качению. С каждым дополнительным 1 см радиуса, степень сопротивления снижается на 1%;
  • Тип протектора. Чем глубже канавки протектора, тем выше сопротивление. Например, увеличенная глубина на 50%, обеспечивает дополнительные 12% сопротивления. К окончанию ресурса колеса, степень качения ухудшается на 25 %, в соотношении с новой покрышкой;
  • Давление в баллонах. Слабо накаченная шина, обеспечивает неравномерное пятно контакта. Увеличивается амплитуда деформаций, что приводит к дополнительному нагреву и как следствие, потери энергии. В совокупности, это увеличивает степень качения колеса.
  • Тип дорожного полотна и его температура. Чем ровнее дорога, тем ниже резина подвержена сопротивлению. Чем выше температура окружающей среды и дорожного покрытия, тем меньше степень сопротивления. С каждым 10-градусным шагом в сторону повышения, качение уменьшается на 6 %.

Особенности экошин

В свете продолжающейся борьбы за экологию, многие производители шин примкнули к движению защитников окружающей среды. Это проявилось в разработке «зелёных» покрышек, выпускаемых с 1992 года. Постепенно, характеристики колёс повышаются. Смысл «зелёных» покрышек в том, что «обутый» автомобиль в резину с пониженным сопротивлением качению расходует меньше топлива, примерно на 20 %. Таким образом, в атмосферу попадает меньшее число вредных веществ, содержащихся в выхлопных газах.

Согласно исследованиям, каждые 45 000 пробега на шинах с низким сопротивлением качению, владельцы экономят сумму, равную ¼ от стоимости всего комплекта колёс. Кроме экономии, водители меньше загрязняют воздух, внося личный вклад в экологию, заботясь о своём потомстве. Чтобы информировать покупателя, производитель наносит на боковой профиль резины соответствующие маркировки: Green X или Reduces CO2.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector