Trm-parking.ru

ТРМ Паркинг
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент вязкости

Коэффициент вязкости

Вя́зкость (вну́треннее тре́ние) — одно из трёх явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: пуаз, Па·с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объема через калиброванное отверстие под действием силы тяжести.

Прибор для измерения вязкости называется вискозиметром.

Содержание

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

,

где — средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

Вторая вязкость

Вторая вязкость — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.

Вязкость жидкостей

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон Ньютона: Коэффициент вязкости η может быть получен на основе соображений о движениях молекул. Очевидно, что η будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде: η = Ce w / kT

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества VM . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. Если вязкость падает при увеличении скорости, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов), это термически активизируемый процесс [1] :

где Q — энергия активации вязкости (кДж/моль), T — температура (К), R — универсальная газовая постоянная (8,31 Дж/моль•К) и A — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q изменяется от большой величины QH при низких температурах (в стеклообразном состоянии) на малую величину QL при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса : сильные материалы имеют RD , в то время как ломкие материалы имеют .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

с постоянными A1 , A2 , B , C и D , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования Tg это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Если температура существенно ниже температуры стеклования T , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

с высокой энергией активации QH = Hd + Hm , где Hd — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm — энтальпия их движения. Это связано с тем, что при T аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T > > Tg двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

но с низкой энергией активации QL = Hm . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Сила вязкого трения

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что тела придут в движение при наличии сколь угодно малой силы, то есть не существует трения покоя. Это отличает вязкое трение от сухого.

Примечания

  1. Я. И. Френкель. Кинетическая теория жидкостей. Ленинград, Наука, 1975.

См. также

  • Уравнения Навье-Стокса

Ссылки

  • Аринштейн А., Сравнительный вискозиметр ЖуковскогоКвант, № 9, 1983.
  • Измерение вязкости нефтепродуктов — обзор методов и единиц измерения вязкости.
  • R.H. Doremus. J. Appl. Phys., 92, 7619-7629 (2002).
  • M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).
  • M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
  • Булкин П. С. Попова И. И.,Общий физический практикум. Молекулярная физика
  • Статья в энциклопедии Химик.ру

Литература

  • Я. И. Френкель. Кинетическая теория жидкостей. — Л.: «Наука», 1975.

Wikimedia Foundation . 2010 .

  • Коэффициент гармоник
  • Коэффициент де ритиса

Смотреть что такое «Коэффициент вязкости» в других словарях:

Коэффициент вязкости — показатель деформируемости, характеризующий скорость пластично вязкого течения сильнольдистого мерзлого грунта, зависящий от времени действия нагрузки и значения отрицательной температуры грунта. Источник: ГОСТ 30416 96: Грунты. Лабораторные… … Словарь-справочник терминов нормативно-технической документации

коэффициент вязкости — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN viscosity factorVFmodulus of viscosity … Справочник технического переводчика

коэффициент вязкости — klampos koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. coefficient of viscosity; dynamic viscosity; viscosity; viscosity factor vok. dynamische… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

коэффициент вязкости — Viscosity Coefficient Коэффициент вязкости Отношение напряжения сдвига к скорости сдвига в уравнении Ньютона для вязкого течения … Толковый англо-русский словарь по нанотехнологии. — М.

коэффициент вязкости — klampos koeficientas statusas T sritis fizika atitikmenys: angl. coefficient of viscosity; viscosity factor vok. Viskositätskoeffizient, m; Zähigkeitskoeffizient, m rus. коэффициент вязкости, m pranc. coefficient de viscosité, m … Fizikos terminų žodynas

Коэффициент вязкости кинематический — – отношение динамической вязкости жидкости или газа к их плотности, в качестве системной единицы измерения которой в СИ применяют м2/сек, а в системе СГС в качестве единицы кинематической вязкости применяют стокс. [Словарь основных терминов … Энциклопедия терминов, определений и пояснений строительных материалов

коэффициент вязкости горной породы — Параметр, количественно оценивающий вязкость и равный произведению предела прочности горной породы при сжатии на коэффициент пластичности. [ГОСТ Р 50544 93] Тематики горные породы Обобщающие термины физические свойства горных пород EN coefficient … Справочник технического переводчика

коэффициент вязкости шлака — Напр., используется для определения сжигания угля в циклонной топке. [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN slag viscosity factor … Справочник технического переводчика

Коэффициент вязкости динамический — – свойство жидкостей и газов, характеризующее их сопротивляемость скольжению или сдвигу, за единицу измерения которой принят 1 пуазейль (1 н·сек/м2), а в системе СГС – пуаз. [Словарь основных терминов, необходимых при проектировании,… … Энциклопедия терминов, определений и пояснений строительных материалов

коэффициент вязкости горной породы — 158 коэффициент вязкости горной породы Параметр, количественно оценивающий вязкость и равный произведению предела прочности горной породы при сжатии на коэффициент пластичности Источник: ГОСТ 30330 95: Породы горные. Термины и определения… … Словарь-справочник терминов нормативно-технической документации

Понятие динамической и кинетической вязкости

Вязкостью называется свойство жидкости сопротивляться внешнему воздействию благодаря внутреннему трению, возникающему между слоями.

Для определения вязкости существует два основных параметра: динамическая вязкость и кинематическая вязкость, которые связаны между собой соотношением:

Где ν – кинематическая вязкость, м 2 /с;

µ — динамическая вязкость, Па*с;

ρ – плотность жидкости, кг/м 3 .

Между слоями жидкости, движущимися друг относительно друга, возникает сила. Эта сила прямо пропорциональна скорости движения и площади соприкосновения.

В 1687 году И. Ньютоном был установлен закон вязкого течения жидкости:

где τ – касательные напряжения;

Коэффициент пропорциональности µ и назвали динамической вязкостью жидкости.

Динамическая и кинематическая вязкости зависят от температуры рабочей среды. Причем для газов и жидкостей эта зависимость различна. Это связано с различием во взаимодействии молекул. Для капельных жидкостей оба коэффициента убывают с возрастанием температуры.

Для определения вязкости используются специальные приборы – вискозиметры (U-образная стеклянная трубка). Одно из колен вискозиметра содержит впаянный капилляр, который оканчивается шариком. Под шариком и над ним нанесены метки, которые ограничивают определенный объем.

Для определения вязкости жидкости необходимо выбрать эталонную жидкость, вязкость которой является известной величиной. Для определения вязкости рабочей жидкости используется формула:

где µ — вязкость рабочей жидкости;

µ0 – вязкость эталонной жидкости;

t – время истечения через капилляр исследуемой жидкости;

t0 – время истечения через капилляр эталонной жидкости;

ρ – плотность исследуемой жидкости;

ρ0 – плотность эталонной жидкости.

Так же существует понятие условной вязкости. Это отношение времени истечения через вискозиметр испытуемой жидкости при рабочей температуре к времени истечения дистиллированной воды при температуре 20°С (водное число). Водное соотношение является постоянной величиной для каждого прибора. Это соотношения выражается условными градусами.

где ВУ – условная вязкость;

Еще один метод определения вязкости жидкости – метод Стокса.

Он заключается в бросании различных шариков в жидкость и измерении скорости их падения. На шарик действуют три силы: сила тяжести, выталкивающая сила и сила сопротивления окружающей среды.

где Fтяж – сила тяжести;

m – масса шарика;

r – радиус шарика;

ρш – плотность шарика.

где FA – выталкивающая сила.

где Fc – сила сопротивления окружающей среды;

ϑ – скорость движения шарика.

Подставив выражения для сил, действующих на шарик в итоговое уравнение, можно найти вязкость жидкости:

Вязкость нефти

Вязкость — важнейшее технологическое свойство нефти. Классификация

Величина вязкости учитывается при оценке скорости фильтрации в пласте, при выборе типа вытесняющего агента, при расчете мощности насоса добычи нефти и др.

Параметр вязкость наиболее тесно отражает взаимодействие углеводородов и гетероатомных соединений и коррелирует со степенью их проявления.

Вязкость (абсолютная, динамическая) характеризует силу трения (внутреннего сопротивления), возникающую между 2 смежными слоями внутри жидкости или газа на единицу поверхности при их взаимном перемещении (рис 1).

Динамическая вязкость определяется по уравнению Ньютона:

где А — площадь перемещающихся слоев жидкости или газа ;

F — сила, требующаяся для поддержания разницы скоростей движения между слоями на величину dv;

dy — расстояние между движущимися слоями жидкости (газа);

dv — разность скоростей движущихся слоев жидкости (газа).

μ — коэффициент пропорциональности, абсолютная, динамическая вязкость.

Рис 1. Движение 2 х слоев жидкости относительно друг друга

Размерность динамической вязкости определяется из уравнения Ньютона:

система СИ — (Па*с, мПа*с), паскаль /сек;

система СГС — (пуаз (пз), сантипуз (спз)) = (г/ (см*сек)).

С вязкостью связан параметр — текучесть (j) — величина обратная вязкости:

Кроме динамической вязкости для расчетов используют также параметр Кинематическая вязкость — свойство жидкости оказывать сопротивление перемещению одной части жидкости относительно другой с учетом силы тяжести.

Единицы измерения кинематической вязкости:

система СИ — (м 2 /сек, мм 2 /се);

система СГС — (стокс (ст), сантистокс (сст)); сст =1·10-4 м 2 /сек.

Вязкость сепарированной нефти с возрастанием температуры уменьшается, а с возрастанием давления увеличивается.

С увеличением молекулярного веса фракции, температурного интервала выкипания фракции, плотности величина вязкости возрастает .

Вязкость нефти уменьшается с повышением количества углеводородного газа растворенного в ней, и тем больше, чем выше молекулярная масса газа (рис 2).

При увеличением молекулярной массы углеводородного компонента от СН4 к С4Н10, растворенного в нефти вязкость нефтей будет уменьшаться, за счет увеличения доли неполярных соединений (газ идеальная система).

Однако не все компоненты газа подчиняются такой закономерности.

С увеличением количества азота растворенного в нефти вязкость нефти в пластовых условиях будет возрастать.

С увеличением молекулярной массы жидкого углеводородного компонента от С5Н12 и выше, растворенного в нефти, ее вязкость будет возрастать за счет увеличения доли полярных компонентов (нефть неидеальная система).

Рис 2. Изменение вязкости нефти Балаханского месторождения при насыщении ее газом

Вязкость смесей аренов больше вязкости смесей алканов. Поэтому, нефть с высоким содержанием ароматических углеводородов более вязкая, чем нефть парафинового основания

Чем больше в нефти содержится смол и асфальтенов (больше полярных компонентов), тем выше вязкость.

Вязкость сырой нефти больше вязкости сепарированной.

Величина вязкости нефти коррелирует с величиной плотностью или удельным весом нефти.

Вязкость пластовой нефти всегда значительно отличается от вязкости сепарированной нефти, вследствие большого количества растворенного газа, содержащегося в ней, пластовых температур.

Повышение температуры вызывает уменьшение вязкости нефти (рис 3 а).

Повышение давления, ниже давления насыщения приводит к увеличению газового фактора и, как следствие, к уменьшению вязкости.

Повышение давления выше давления насыщения для пластовой нефти приводит к увеличению величины вязкости (рис 3 б).

Минимальная величина вязкости имеет место, когда давление в пласте становится равным пластовому давлению насыщения (рис 3 б).

По данным Г. Требина вязкость нефти в пластовых условиях различных месторождений изменяется от сотен мПа*с до десятых долей мПа*с (около 25 % залежей), от до 7 мПа*с (около 50 % залежей) и от 5 до 30 мПа*с (около 25 %).

Рис 3 Изменение вязкости пластовой нефти от температуры (а) и давления (б)

Однако известны месторождения нефти, вязкость которых в пластовых условиях достигает значительной величины: Русское месторождение Тюменской области (μ ≈ 700-800 мПа*с), залежи Ухтинского месторождения Коми (μ ≈ 2300 мПа*с), пески Атабаска в Канаде.

В пластовых условиях вязкость нефти может быть в 10 ки раз меньше вязкости сепарированной нефти или нефти в поверхностных условиях.

Для Арланского месторождения — разница более 20.

В пласте на нефть воздействует содержащийся в пласте газ и пластовая температура.

Влияние плотности нефти на вязкость: легкие нефти менее вязкие, чем тяжелые.

Классификация нефти по вязкости:

незначительная вязкость — μ 25 мПа* с;

сверхвязкие (СВН) — μ > 30 мПа*.

Например, вязкость нефтей залежей:

верхнемеловые отложения Северного Кавказа 0,2-0.3 мПа*с; девон в Татарстане, Башкирии, мел Западной Сибири — 1-5 мПа*с;

Ашальчинское месторождение сверхвязкой нефти, Ярегское месторождение в Коми ( шахтный способ добычи) — более 30 мПа*с.

Что называется коэффициентом вязкости жидкости

Лабораторная работа № 204

ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

Цель работы: изучить метод Стокса, определить коэффициент динамической вязкости глицерина.

Приборы и принадлежности:

стеклянный цилиндрический сосуд с глицерином,

1. ВЯЗКОСТЬ ЖИДКОСТИ. ЗАКОН СТОКСА

В жидкостях и газах при перемещении одних слоев относительно других возникают силы внутреннего трения, или вязкости, которые определяются законом Ньютона:

(1)

где h — коэффициент внутреннего трения, или коэффициент динамической вязкости, или просто вязкость; модуль градиента скорости, равный изменению скорости слоев жидкости на единицу длины в направлении нормали (в нашем случае вдоль оси y ) к поверхности S соприкасающихся слоев (рис. 1).

Согласно уравнению (1) коэффициент вязкости h в СИ измеряется в Па × с или в кг/( м × с ).

Механизм внутреннего трения в жидкостях и газах неодинаков, т.к. в них различен характер теплового движения молекул. Подробное изложение вязкости жидкости рассмотрено в работе № 203, вязкости газов – в работе № 205.

Вязкость жидкости обусловлена молекулярным взаимодействием, ограничивающим движение молекул. Каждая молекула жидкости находится в потенциальной яме, создаваемой соседними молекулами. Поэтому молекулы жидкости совершают колебательные движения около положения равновесия, то есть внутри потенциальной ямы. Глубина потенциальной ямы незначительно превышает среднюю кинетическую энергию, поэтому, получив дополнительную энергию при столкновении с другими молекулами, она может перескочить в новое положение равновесия. Энергия, которую должна получить молекула, чтобы из одного положения перейти в другое, называется энергией активации W , а время нахождения молекулы в положении равновесия – временем «оседлой жизни» t . Перескок молекул между соседними положениями равновесия является случайным процессом. Вероятность того, что такой перескок произойдет за время одного периода t 0 , в соответствии с законом Больцмана, составляет

(2)

Величина, обратная вероятности перехода молекулы определяет среднее число колебаний, которое должна совершить молекула, чтобы покинуть положение равновесия. Среднее время «оседлой жизни» молекулы . Тогда

(3)

где k – постоянная Больцмана; средний период колебаний молекулы около положения равновесия.

Коэффициент динамической вязкости зависит от : чем реже молекулы меняют положение равновесия, тем больше вязкость. Используя модель скачков молекул, советский физик Я.И.Френкель показал, что вязкость изменяется по экспоненциальному закону:

(4)

где А – константа, определяемая свойствами жидкости.

Формула (4) является приближенной, но она достаточно хорошо описывает вязкость жидкости, например, воды в интервале температур от 5 до 100 ° С, глицерина – от 0 до 200 ° С.

Из формулы (4) видно, что с уменьшением температуры вязкость жидкости возрастает. В ряде случаев она становится настолько большой, что жидкость затвердевает без образования кристаллической решетки. В этом заключается механизм образования аморфных тел.

При малых скоростях движения тела в жидкости слой жидкости, непосредственно прилегающий к телу, прилипает к нему и движется со скоростью тела. По мере удаления от поверхности тела скорость слоев жидкости будет уменьшаться, но они будут двигаться параллельно. Такое слоистое движение жидкости называется ламинарным. При больших скоростях движения жидкости ламинарное движение жидкости становится неустойчивым и сменяется турбулентным, при котором частицы жидкости движутся по сложным траекториям со скоростями, изменяющимися беспорядочным образом. В результате происходит перемешивание жидкости и образуются вихри.

Характер движения жидкости определяется безразмерной величиной Re , называемой числом Рейнольдса. Это число зависит от формы тела и свойств жидкости. При движении шарика радиусом R со скоростью U в жидкости плотностью r ж

(5)

При малых Re ( — 2 мм движется со скоростью 5 — 10 см/ c в вязкой жидкости, например в глицерине, движение жидкости будет ламинарным. В этом случае на тело будет действовать сила сопротивления, пропорциональная скорости

(6)

где r – коэффициент сопротивления. Для тела сферической формы

Сила сопротивления шарика радиусом R примет вид:

(7)

Формула (7) называется законом Стокса.

2. ОПИСАНИЕ РАБОЧЕЙ УСТАНОВКИ И МЕТОДА

Одним из существующих методов определения коэффициента динамической вязкости является метод Стокса. Суть метода заключается в следующем. Если в сосуд с жидкостью бросить шарик плотностью большей, чем плотность жидкости ( r > r ж ), то он будет падать (рис. 2). На движущийся в жидкости шарик действует сила внутреннего трения (сила сопротивления) , тормозящая его движение и направленная вверх. Если считать, что стенки сосуда находятся на значительном расстоянии от движущегося шарика, то величину силы внутреннего трения можно определить по закону Стокса (6).

Вязкость воды H2O

Кинематическая вязкость воды при различных температурах

Вода H2O представляет собой ньютоновскую жидкость и ее течение описывается законом вязкого трения Ньютона, в уравнении которого коэффициент пропорциональности называется коэффициентом вязкости, или просто вязкостью.

Вязкость воды зависит от температуры. Кинематическая вязкость воды равна 1,006·10 -6 м 2 /с при температуре 20°С.

В таблице представлены значения кинематической вязкости воды в зависимости от температуры при атмосферном давлении (760 мм.рт.ст.). Значения вязкости даны в интервале температуры от 0 до 300°С. При температуре воды свыше 100°С, ее кинематическая вязкость указана в таблице на линии насыщения.

Кинематическая вязкость воды изменяет свою величину при нагревании и охлаждении. По данным таблицы видно, что с ростом температуры воды ее кинематическая вязкость уменьшается. Если сравнить вязкость воды при различных температурах, например при 0 и 300°С, то очевидно ее уменьшение примерно в 14 раз. То есть вода при нагревании становится менее вязкой, а высокая вязкость воды достигается если воду максимально охладить.

Значения коэффициента кинематической вязкости при различных температурах необходимы для вычисления величины числа Рейнольдса, которое соответствует определенному режиму течения жидкости или газа.

Кинематическая вязкость воды — таблица (приведены значения вязкости, увеличенные в 10 6 раз)

t , °С020406080100120140
ν ·10 6 , м 2 /с1,7891,0060,6590,4780,3650,2950,2520,217
t , °С160180200220240260280300
ν ·10 6 , м 2 /с0,1910,1730,1580,1480,1410,1350,1310,128

Если сравнить вязкость воды с вязкостью других ньютоновских жидкостей, например с кровью, или с маслами, то вода будет иметь меньшую вязкость. Менее вязкими, по сравнению с водой, являются органические жидкости – ацетон, бензол и сжиженные газы, например такие, как жидкий азот.

Динамическая вязкость воды в зависимости от температуры

Кинематическая и динамическая вязкость связаны между собой через значение плотности. Если кинематическую вязкость умножить на плотность, то получим величину коэффициента динамической вязкости (или просто динамическую вязкость).

Динамическая вязкость воды при температуре 20°С равна 1004·10 -6 Па·с. В таблице даны значения коэффициента динамической вязкости воды в зависимости от температуры при нормальном атмосферном давлении (760 мм.рт.ст.). Вязкость в таблице указана при температуре от 0 до 300°С.

Динамическая вязкость воды — таблица (даны значения вязкости, увеличенные в 10 6 раз)

t , °С020406080100120140
μ ·10 6 , Па·с17881004653,3469,9355,1282,5237,4201,1
t , °С160180200220240260280300
μ ·10 6 , Па·с173,6153,0136,4124,6114,8105,998,191,2

Динамическая вязкость при нагревании воды уменьшается, вода становится менее вязкой и при достижении температуры кипения 100°С величина вязкости воды составляет всего 282,5·10 -6 Па·с.

Что называется коэффициентом вязкости жидкости

1. Конвективный перенос теплоты

Конвекция возможна только в текучей среде, в которой перенос теплоты связан с переносом самой среды. Конвекция теплоты всегда сопровождается теплопроводностью, так как при движении жидкости или газа неизбежно происходит соприкосновение отдельных частиц, имеющих различные температуры. Совместный перенос теплоты путем конвекции и теплопроводности называют конвективным теплообменом.

Теплоотдача — конвективный теплообмен между движущейся средой и поверхностью (стенкой).

Количество теплоты, переданное в процессе теплоотдачи, определяется по уравнению Ньютона-Рихмана:

для установившегося режима

, Вт; (1.1)

для неустановившегося режима

, Дж, (1.2)

где α — коэффициент теплоотдачи, Вт/(м 2 ∙К); t ж , t ст – средние температуры жидкости и стенки, °С; F – поверхность стенки, м 2 ; Q ( Q / ) – тепловой поток (количество теплоты), Вт (Дж); τ – время, с.

Коэффициент теплоотдачи α – характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Коэффициент α показывает, какое количество тепла передается от единицы поверхности стенки к жидкости в единицу времени при разности температур между стенкой и жидкостью в 1 градус (К), .

Установлено, что коэффициент теплоотдачи зависит от многих факторов: вида и режима движения жидкости, ее физических свойств, размеров и формы стенки, шероховатости стенки. Определение α является основной задачей расчета теплообменных аппаратов. Обычно коэффициент теплоотдачи определяют из критериальных уравнений, полученных преобразованием дифференциальных уравнений гидродинамики и конвективного теплообмена методами теории подобия.

Согласно положений теории подобия конвективный теплообмен без изменения агрегатного состояния вещества в стационарных условиях может быть описан критериальным уравнением вида:

, (1.3)

критерий Нуссельта, характеризующий подобие процессов теплопереноса на границе между стенкой и потоком жидкости;

критерий Рейнольдса, который характеризует гидродинамический режим потока при вынужденном движении и является мерой соотношения сил инерции и вязкого трения;

критерий Прандтля, который характеризует физико – химические свойства теплоносителя и является мерой подобия температурных и скоростных полей в потоке;

критерий Грасгофа, характеризующий соотношение сил вязкого трения и подъемной силы, описывает режим свободного движения теплоносителя;

безразмерный геометрический симплекс, характеризующий геометрическое подобие системы.

В выражении этих критериев: — кинематический коэффициент вязкости теплоносителя, м 2 /с; w — скорость движения теплоносителя, м/с; – коэффициент температуропроводности, м 2 /с; g – ускорение свободного падения м/с 2 ; l – определяющий размер, м; — характерный размер, м; β – коэффициент температурного расширения, 1/К; ρ – плотность теплоносителя, кг/м 3 ; ∆ t = t ст — t ж – температурный напор между стенкой и теплоносителем, 0 С; λ – коэффициент теплопроводности теплоносителя, Вт/(м·К); μ – динамический коэффициент вязкости, Па·с; с – теплоемкость теплоносителя, Дж/(кг·К); τ – время процесса, с.

Критерий Нуссельта, входящий в уравнение (1.3), является определяемым. При известном значении Nu коэффициент теплоотдачи может быть рассчитан по формуле:

. (1.4)

Для расчета числа критерия Нуссельта при вынужденном движении потока в прямых трубах или каналах можно рекомендовать следующие уравнения:

а) для ламинарного режима движения теплоносителя, :

, (1.5)

где — критерий Прандтля для теплоносителя при температуре стенки;

б) для переходного режима движения теплоносителя, :

. (1.6)

Значение коэффициента С определяется из таблицы 1.1 в зависимости от величины критерия Рейнольдса.

Для приближенных расчетов можно пользоваться уравнением:

. (1.7)

Определение коэффициента вязкости жидкости методов стокса

Главная > Лабораторная работа >Физика

Определение коэффициента вязкости жидкости методов стокса

Приборы и принадлежности:

Стеклянный цилиндр с исследуемой жидкостью, шарики малого диаметра, микрометр, секундомер, пинцет, масштабная линейка.

Теория работы и описание приборов

При движении жидкости между её слоями действуют силы внутреннего трения. Поэтому различные слои жидкости при её движении имеют различную скорость. Жидкость, обладающая внутренним трением, называется вязкой. Разобьем мысленно жидкость на ряд слоев очень малой толщины и параллельных стенкам трубы (рис. 6). Слой жидкости, прилегающий к стенке, движется с наименьшей скоростью V . Следующий слой движется уже с большей скоростью V 1 , следующий – со скоростью V 2 и т.д.

Пусть расстояние между слоями будет . Величина называется градиентом скорости, т.е. представляет собой изменение скорости на единицу длины в направлении, перпендикулярном направлению скорости.

Опыты показали, что сила внутреннего трения F пропорциональна величине площади соприкосновения S движущих слоев и градиенту скорости :

Выражение (1) есть закон Ньютона для внутреннего трения, где  – коэффициент внутреннего трения или коэффициент вязкости. Из формулы (1) получим:

Положим ; , тогда величина коэффициента вязкости  будет равна численному значению силе внутреннего трения, возникающего при движении одного слоя площадью, равной единице, относительно другого слоя при градиенте скорости, равном единице.

Коэффициент вязкости зависит от рода жидкости и уменьшается с повышением температуры. Из (2) единица вязкости равна

Эта единица называется Ньютон-секунда на квадратный метр. Ньютон-секунда на квадратный метр – коэффициент вязкости такой жидкости, в котором 1 м 2 слоя испытывает силу внутреннего трения 1Н при градиенте скорости 1 с -1 .

Коэффициент вязкости может быть определен методом падающего шарика в вязкой среде (методом Стокса). Рассмотрим падение шарика в вязкой покоящейся жидкости. Тело, движущееся в жидкости, увлекая прилегающие к нему слои, испытывает, благодаря вязкости, сопротивление (трение) со стороны ближайших слоев жидкости.

Сила сопротивления зависит от скорости движения тела, его размеров и формы. Как установил Стокс, для тел шарообразной формы, движущихся с небольшой скоростью, сила сопротивления жидкости F пропорциональна скорости движения, радиусу шара r и коэффициенту вязкости жидкости  :

Формула Стокса применима также и к случаю падения дождевых капель в атмосфере.

На шарик массой т и радиусом r , падающий со скоростью U в жидкости с вязкостью  действует три силы: сила тяжести P , выталкивающая сила жидкости F 1 , сила сопротивления жидкости F (рис. 7).

Так как силы Р и F 1 постоянны, а сила F возрастает с увеличением скорости движения шарика, то с некоторого момента времени эти силы уравновесят друг друга, т. е. Равнодействующая всех сил станет равной нулю, и , следовательно, начиная с этого момента времени, шарик будет двигаться равномерно. Тогда

Учитывая, что по второму закону Ньютона

а по закону Архимеда выталкивающая сила

где – плотность шарика;

m 1 – масса вытесненной шариком жидкости;

V – объем шарика;

r – радиус шарика.

Тогда уравнение (4) можем записать:

откуда после соответствующих преобразований

Скорость равномерного движения шарика в жидкости определяется по формуле , где t – время, в течении которого шарик прошел расстояние l .

Подставив в (6) значение r , выраженное через диаметр шарика D , получим окончательное выражение для коэффициента вязкости:

Порядок выполнения работы

Масштабной линейкой измерить расстояние l между кольцевыми метками a и b (рис.7) на цилиндре. Метка a должна отстоять от поверхности жидкости на расстояние не менее 4 – 5 см, ниже которого движение шарика будет равномерным.

Измерить при помощи микрометра диаметр шарика D.

Пинцетом опустить шарик в цилиндр по осевой линии цилиндра.

В момент прохождения шариком верхней кольцевой метки a пустить в ход секундомер и остановить его в момент прохождения шариком второй кольцевой метки b . При определении момента прохождения шарика через метку, глаз должен находиться на одном уровне с меткой. Отсчет по секундомеру определяет время t прохождения шариком пути l . Опыт повторить пять раз.

По полученным данным вычислить коэффициент вязкости  по формуле (7), в которой

Результаты измерений и вычислений занести в таблицу.

Вычислить абсолютную погрешность каждого опыта по формуле: , где i – номер измерения; i принимает значения 1, 2, 3, 4, 5.

Вычислить среднюю абсолютную погрешность по формуле:

Вычислить относительную погрешность результата косвенных измерений по формуле:

Исследование и измерение коэффициента вязкости жидкостей

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №12 с углубленным изучением отдельных предметов»

Исследование и измерение коэффициента вязкости жидкостей

Исследовательская работа

Выполнена ученицей

9 класса МБОУ «СОШ №12 с УИОП»

г. Старый Оскол, Белгородской области

Селезневой Анастасией Романовной

Научный руководитель :

Брызгунова Ирина Николаевна

Сотникова Валентина Анатольевна

Старый Оскол, 2017 г.

Разработка старых и освоение новых нефтяных, газовых и газоконденсатных месторождений в России и за рубежом требует решение все более сложных научных, технических и экономических задач. Проблемы, которые существуют в нефтяной и газовой отрасли показывает необходимость некоторых вопросов, касающихся свойств жидкостей и газов. Одним из параметров жидкостей и газов является вязкость, учёт этого параметра необходим при добыче, транспортировке и переработке нефти, газа и т.д. Разработка месторождений и перекачка нестабильных углеводородных систем требует определения вязкости таких сред. В последнее время разрабатываются месторождения нефти, среди которых часто встречаются нефти с неньютоновским поведением. Неньютоновская зависимость вязкости от скорости течения требует определённые требования к транспортировке таких сред. Интенсивное развитие технологии добычи, транспортировки и переработки сырья требует расширения представлений о вязкости.

Объект исследования: неньютоновские жидкости(смесь крахмала с водой, бензин, масло подсолнечное)

Предмет исследования: коэффициент вязкости неньютоновских жидкостей

Цель работы: исследовать коэффициент вязкости неньютоновских жидкостей с помощью опытов.

Изучить теорию о неньютоновских жидкостях;

Теорию подтвердить научными экспериментами.

В ходе работы мною был проведен подбор и анализ используемых источников информации:

Бретшнайдер Ст. Свойства газов и жидкостей.-М.-Л.:Химия,1966.

Евдокимов И.Н., Елисеев Н.Ю. Молекулярные механизмы вязкости жидкости. Часть I . Основные понятия. – М.: РГУ нефти и газа имени И.М. Губкина, 2005. – 59с.

Никулин С.С. Определение вязкости жидкости методом Стокса. – Тамбов: Изд-во ГОУ ВПО ТГТУ, 2011. – 12с.

Рид Р.Г., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие — Л.: Химия, 1982. — 592 c.

Штеренлихт Д.В. Гидравлика: Учебник для вузов. – М.: Энерго-атомиздат, 1984. – 640с.

Методы: практический, теоретический, эксперимент.

Новизна исследования состоит в том, что в ходе эксперимента исследовали коэффициент вязкости неньютоновских жидкостей.

Теоретическая значимость заключается в рассмотрении теоретических аспектов по теме вязкости жидкостей

Практическая значимость состоит в проведении экспериментов, в ходе которых исследовали неньютоновские жидкости и измеряли коэффициент вязкости.

Место и сроки проведения работы: с сентября 2016 года – ноябрь 2016 года в МБОУ «СОШ №12 с УИОП».

1.1 Вязкость и реология

Ньютон пришел к изучению течения жидкостей, когда пытался моделировать движение планет Солнечной система посредством вращения цилиндра, изображавшего Солнце, в воде. В своих наблюдениях он установил, что если поддерживать вращение цилиндра, то оно постепенно передаётся всей массе жидкости. Впоследствии для описания подобных свойств жидкостей стали использовать термины «внутреннее трение» и «вязкость», получившие одинаковое распространение. Исторически, эти работы Ньютона положили начало изучению вязкости и реологии.

Дальнейшее развитие реология получила в работах Пуазейля с целью изучения закономерностей течения крови с сосудах. Все работы и привели его к открытию закона. Он установил, что количество воды, протекающей по трубке, прямо пропорционально четвертой степени диаметра трубки и первой степени давления. Далее благодаря Бернулли, Дарси, Кулону, Навье, Стоксу, Шведову были выполнены работы по изучению вязкости. С тех пор все большее число исследователей занимаются проблемами вязкости и реологии, в связи с их большой значимостью для практики.

В настоящее время структурно-механические свойства тел и сред исследуют методами реологии – науки о деформациях и течении материальных систем. Собственно, реология изучает механические свойства систем по проявлению деформации под действием внешних напряжений. Методы реологии широко используются для описания вязких свойств самых различных систем.[2]

1.2 Коэффициенты вязкого течения

При движении вязкой среды возникает сопротивление, подобное сопротивлению при перемещении тела вдоль поверхности. Поэтому явление вязкости можно определить как проявление сопротивления среды при перемещении одного ее внутреннего слоя относительно другого. Вязкость можно определить и как свойство, благодаря которому выравниваются скорости движения соседних слоёв жидкости или газа.

Основными количественными характеристиками вязкости являются динамический коэффициент вязкости η и кинематический коэффициент вязкости ν.

Они связаны соотношением ν = , ρ – плотность среды.

Иногда используют величину, обратную динамическому коэффициенту вязкости = , которая называется коэффициент текучести.

В международной системе единиц (СИ) единицей динамической вязкости является

1 Па с = 1 = 1 = 10 П

Величина равная 1 , называется стоксом.

Динамический и кинематический коэффициент вязкости в значительной мере зависит от температуры. Вязкость жидкостей убывает с возрастанием температуры, в то время как вязкость газов обычно увеличивается.[2]

1.3 Течение в жидкостях

Так как явление вязкости определяется характером движения и взаимодействия молекул данного вещества друг с другом, то количественное изучение этого явления – измерение коэффициентов вязкости, имеет значение не только для техники и производства, но и позволяет получить существенные сведения о молекулярном движении и взаимодействии в веществе. Существуют границы применимости различных методов измерения вязкости, которые во многом определяются изменением характера течения жидкости.

Большинство течений жидкостей и газов как в природе (воды в морях, реках, водопадах и т.д.), так и в технических устройствах (трубах, каналах, струях, в резких изгибах профилей труб и т.д.). Это необходимо учитывать при проектировании и перестройке технических объектов: гидротехнических сооружений, турбинных установок, газо-и нефтепроводных магистралей, насосов и т.д.[2]

ОФС.1.2.1.0015.15 Вязкость

Содержимое (Table of Contents)

ОФС.1.2.1.0015.15 Вязкость

Вязкость (внутреннее трение) – свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Вязкость ОФС.1.2.1.0015.15

Взамен ГФ XII, ч.1, ОФС 42-0038-07

Вязкость (внутреннее трение) – свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой.

Основными кинематическими переменными для жидкостей служат деформация и ее скорость. Поэтому для изучения реологических характеристик жидких сред устанавливают связь между приложенными внешними нагрузками и кинематическими параметрами.

Жидкости, вязкость которых не зависит от напряжения сдвига и при определенной концентрации и температуре является постоянной величиной в соответствии с законом Ньютона, называются ньютоновскими. Жидкости, вязкость которых не подчиняется закону Ньютона и зависит от напряжения сдвига, называются неньютоновскими.

Различают динамическую, кинематическую, относительную, удельную, приведенную и характеристическую вязкости. Для неньютоновских жидкостей, главным образом, характерна структурная вязкость. Структурная (эффективная или кажущаяся) вязкость – вязкость при данном напряжении сдвига.

Динамическая вязкость или коэффициент вязкости (η) – это приходящаяся на единицу поверхности тангенциальная сила, называемая также напряжением сдвига (τ), выраженная в паскалях (Па), которую необходимо приложить для того, чтобы переместить слой жидкости площадью 1 м 2 со скоростью (v) 1 метр в секунду (м∙c -1 ), находящийся на расстоянии (х) 1 м относительно другого слоя, параллельно плоскости скольжения.

Величина dv/dx представляет собой градиент скорости и определяет скорость сдвига D, выраженную в обратных секундах (с -1 ).

Таким образом, вязкость (η) определяется отношением напряжения сдвига (τ) к скорости сдвига D и определяется по формуле:

Динамическая вязкость (η) в системе СИ выражается в Паскаль-секундах (Па ∙ с) или миллипаскаль-секундах (мПа ∙ с); в системе СГС – в пуазах (П) или сантипуазах (сП). Также динамическая вязкость может измеряться в дин ∙ с/см 2 и кгс ∙ с/м 2 и производных от них единицах.

При измерении вязкости ньютоновских жидкостей в капиллярных вискозиметрах определяют кинематическую вязкость.

Кинематическую вязкость (ν), выраженную в метрах квадратных на секунду (м 2 ∙ с -1 ), получают делением величины динамической вязкости η на плотность жидкости ρ, выраженную в килограммах на метр кубический (кг ∙ м -3 ), измеренную пикнометром или плотномером при той же температуре:

Кинематическая вязкость в системе СИ выражается в метрах квадратных на секунду (м 2 ∙с –1 ) или миллиметрах квадратных на секунду (мм 2 ∙ с –1 ); в системе СГС – в стоксах (Ст) или сантистоксах (сСт).

При работе с растворами используются такие реологические характеристики, как относительная, удельная, приведенная и характеристическая вязкости.

Относительная вязкость (ηотн.) – отношение вязкости раствора к вязкости растворителя:

Часто вязкость выражают как удельную вязкость (ηуд), которая показывает, какая часть вязкости раствора обусловлена присутствием в нем растворенного вещества:

(3)

η – вязкость раствора;

ηо – вязкость растворителя.

Удельная вязкость, отнесенная к единице концентрации раствора, называется приведенной вязкостью (ηприв):

где с – концентрация раствора.

Для растворов полимеров вязкость является функцией молекулярных масс, формы, размеров и гибкости макромолекул. Чтобы определить структурные характеристики полимеров, приведенную вязкость экстраполируют к нулевой концентрации. В этом случае вводится понятие характеристической вязкости [η]:

(5)

Характеристическая вязкость выражается в единицах, обратных единицам концентрации.

Для определения вязкости применяются капиллярные, ротационные вискозиметры и вискозиметры с падающим шариком.

Капиллярные вискозиметры обычно используются для определения вязкости при одном значении скорости сдвига, поэтому применяются в основном для исследования ньютоновских жидкостей. Они просты и удобны в обращении.

Ротационные вискозиметры позволяют определять реологические свойства жидкостей в широком диапазоне скоростей сдвига, что особенно важно для неньютоновских жидкостей.

Вискозиметр с падающим шариком (вискозиметр Гепплера) предназначен для измерения вязкости прозрачных ньютоновских жидкостей.

Допускается использование других вискозиметров при условии, что точность и правильность измерений будет не хуже, чем в случае использования вискозиметров, описанных ниже.

Измерение вязкости на капиллярных вискозиметрах

Для измерения кинематической вязкости применяются капиллярные вискозиметры типа Оствальда и Уббелоде различной модификации.

Стеклянные капиллярные вискозиметры предназначены для определения вязкости:

1) прозрачных жидкостей – серии ВПЖ и ВПЖТ;

2) малых объемов прозрачных жидкостей – серии ВПЖМ и ВПЖТМ;

3) непрозрачных жидкостей – серии ВНЖ и ВНЖТ.

На рис. 1 и 2 представлен общий вид вискозиметров серии ВПЖ.

Вискозиметр стеклянный капиллярный ВПЖ-1

» data-medium-file=»https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?fit=144%2C300&ssl=1″ data-large-file=»https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?fit=182%2C380&ssl=1″ loading=»lazy» src=»https://i0.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2-144×300.png?resize=144%2C300″ alt=»Вискозиметр стеклянный капиллярный ВПЖ-1″ width=»144″ height=»300″ srcset=»https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?resize=144%2C300&ssl=1 144w, https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?w=182&ssl=1 182w» sizes=»(max-width: 144px) 100vw, 144px» data-recalc-dims=»1″ />

Вискозиметр стеклянный капиллярный ВПЖ-1

Рисунок 1 – Вискозиметр стеклянный капиллярный ВПЖ-1

1, 2, 4 – трубки; 3 – измерительный резервуар;

М1, М2 – отметки измерительного резервуара.

Рисунок 2 – Вискозиметр стеклянный капиллярный ВПЖ-2

1, 2 – трубки; 3 – измерительный резервуар;

М1, М2 – отметки измерительного резервуара.

Вискозиметр состоит из капилляра с радиусом R и длиной L, через который под действием силы тяжести протекает жидкость объема V.

Если Н – средняя высота жидкости, g – ускорение силы тяжести, то кинематическая вязкость (ν) в миллиметрах квадратных на секунду (мм 2 ∙ с -1 ) равна:

где – постоянная прибора, обычно выражаемая в миллиметрах квадратных на секунду квадратную (мм 2 ∙ с -2 ).

Если известна плотность испытуемой жидкости ρ, то, зная v, можно вычислить динамическую вязкость η (мПа ∙ с):

ρ – плотность испытуемой жидкости (мг∙мм -3 ), полученная умножением относительной плотности (d) на 0,9982.

Для определения вязкости в каждом конкретном случае капиллярные вискозиметры выбирают в соответствии с табл. 1 и 2 по известным значениям К и V в зависимости от характера испытуемой жидкости, ее объема и значения вязкости.

Методика. Перед проведением измерений вискозиметр следует тщательно промыть и высушить.

В колено трубки 2 вискозиметра наливают измеренный объем жидкости и вискозиметр помещают в вертикальном положении в водяной термостат с температурой (20 ± 0,1) о С, если в фармакопейной статье не указана другая температура, удерживая его в этом положении не менее 30 мин для установления температурного равновесия. Производят повышение уровня жидкости в вискозиметре через отверстие 1 (в случае вискозиметра ВПЖ-1 закрывают трубку 4) до тех пор, пока жидкость не поднимется выше отметки М1. Тогда повышение уровня прекращают, и жидкость опускается. Время t, которое требуется, чтобы мениск прошел расстояние между отметками М1 и М2, замеряют секундомером с точностью до 0,2 с.

Время истечения испытуемой жидкости определяют как среднее не менее чем трех измерений. Полученные данные являются приемлемыми при условии, что результаты двух последовательных измерений отличаются не более чем на 1 %.

Для определения относительной вязкости жидкости ηотн измеряют время истечения между верхней и нижней меткой мениска той жидкости, относительно которой проводят измерения tоср. Затем в том же чистом и сухом вискозиметре при тех же условиях определяют время истечения испытуемой жидкости tcp..

Одновременно при той же температуре, при которой определяют вязкость, измеряют плотности испытуемых жидкостей ρо и ρ пикнометрическим методом и рассчитывают относительную вязкость по формуле:

(8)

Для определения характеристической вязкости готовят не менее 5 испытуемых растворов различной концентрации. При этом должно выполняться условие возможности линейной экстраполяции приведенной вязкости к нулевой концентрации, т.е. концентрации раствора следует выбирать минимальными в пределах чувствительности и точности метода измерения. Для каждой концентрации раствора определяют tcp. и рассчитывают приведенную вязкость. Затем строят зависимость ηприв. от концентрации с и графически или линейным методом наименьших квадратов экстраполируют приведенную вязкость к нулевой концентрации, т.е. находят характеристическую вязкость.

Таблица 1 — Характеристики капиллярных вискозиметров серии ВПЖ-1 и ВПЖТ-1

Диапазон измерения вязкости, мм 2 /с

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector